Math 130: Final Exam Version A

Spring 2019

- Calculators are NOT allowed.
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you must show work for full and partial credit.
- Sign the honor pledge below after completing the exam.
- Please put all work to be graded on the test itself.

First and last name

PID \qquad

UNC Email \qquad

I have not given or received unauthorized help on this exam.
Signature:

1. (3 points) Is $h(x)=x^{2} \sin (x)-4 x$ an even or odd function?
A. Even
(B.) Odd
C. Neither

$$
\begin{aligned}
&-4 x \text { an even or odd function? } \\
& h(-x)=(-x)^{2} \sin (-x)-4(-x) \\
&=x^{2}(-\sin (x))+4 x \\
&=-x^{2} \sin (x)+4 x \\
&=-h(x)
\end{aligned}
$$

2. (3 points) If $\tan (\theta)=-\frac{4}{3}$ and $0<\theta<\pi$, what is $\sin (\theta)$.
A. $-\frac{4}{5}$
B. $-\frac{3}{5}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$
(E) $\frac{4}{5}$

$$
\text { so } \sin (\theta)=\frac{4}{5}
$$

$$
(x, y)
$$

3. (3 points) Select two polar points that are equivalent to the Cartesian point $(-1, \sqrt{3})$.
A. $\left(2, \frac{\pi}{3}\right)$
(B) $\left(2, \frac{2 \pi}{3}\right)$
C. $\left(2, \frac{5 \pi}{6}\right)$
D. $\left(2,-\frac{5 \pi}{6}\right)$
E. $\left(-2, \frac{2 \pi}{3}\right)$
F. $\left(-2, \frac{\pi}{3}\right)$
G. $\left(-2,-\frac{\pi}{6}\right)$
(h.) $\left(-2,-\frac{\pi}{3}\right)$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}=(-1)^{2}+(\sqrt{3})^{2}=1+3=4 \\
& r= \pm 2 \\
& \tan \theta=\frac{y}{x}=\frac{\sqrt{3}}{-1}=-\sqrt{3} \\
& \theta=\frac{2 \pi}{3} \quad \text { or } \theta=\frac{5 \pi}{3} \\
& \left(2, \frac{2 \pi}{3}\right) \text { or }\left(-2, \frac{5 \pi}{3}\right) \\
& \text { or }\left(-2,-\frac{\pi}{3}\right)
\end{aligned}
$$

4. (3 points) Convert the following system of parametric equations to a Cartesian equation.

$$
\left\{\begin{array}{l}
x(t)=t+3 \\
y(t)=-2 t^{2}
\end{array}\right.
$$

A. $y=-2 x^{2}$
B. $y=-2 x^{2}+6$
C. $y=-2 x^{2}-9$

$$
x=t+3 \Rightarrow t=x-3
$$

D. $y=-2(x+3)^{2}$
(E.) $y=-2(x-3)^{2}$
5. (5 points) Which of the following equations represents a circle? Select all that apply.

A. $3 y^{2}+24 y-x^{2}=6$
(B) $x=4 \sin (t)-2, y=4 \cos (t)+3 \rightarrow b i c \quad \frac{x+2}{4}=\sin t \quad \frac{y-3}{4}=c \omega t$
econ
correct
circling

$\Rightarrow\left(\frac{x+2}{4}\right)^{2}+\left(\frac{y-3}{4}\right)^{2}=1 \quad \sin u$
\Rightarrow with share least $\sin ^{2} t+\cos ^{2} t=1$
not
(E.) $r=3 \cos (\theta)$
circus

6. (3 points) The minute hand of a clock is 5 inches long. What distance does the tip of the minute hand travel in 10 minutes?
A. $\frac{\pi}{5}$ inches
(B.) $\frac{5 \pi}{3}$ inches

$$
\begin{aligned}
&{ }^{\text {arclersth }} \\
& y=r \cdot \theta \leftarrow \text { arse } \\
& \theta=\frac{10}{60} \cdot 2 \pi=\frac{2 \pi}{6}=\frac{\pi}{3} \\
& \theta=5 \cdot \frac{\pi}{3}=\frac{5 \pi}{3}
\end{aligned}
$$

C. $\frac{25 \pi}{6}$ inches
D. 10π inches
E. 300 inches
7. (3 points) Find the equation of this sinusoidal function.

A. $y=3 \cos (8 x-1)-5$
B. $y=5 \cos (8(x-1))-3$

$$
\begin{aligned}
& \text { period }=8 \Rightarrow B=\frac{2 \pi}{8}=\frac{\pi}{4} \\
& \text { midline }=2+(-8) \\
& 2
\end{aligned}=-\frac{6}{2}=-3 .
$$

using cosine,
horiz shit is 1 to the right
C. $y=3 \cos \left(\frac{\pi}{4} x-1\right)-5$
D. $y=5 \cos \left(\frac{\pi}{4} x-1\right)-3$
E. $y=5 \cos \left(\frac{\pi}{4}(x-1)\right)-3$
8. (3 points) Find the equation of the curve graphed below.

A. $\frac{(y-2)^{2}}{9}-\frac{(x+3)^{2}}{16}=1$
B. $\frac{(x+3)^{2}}{16}-\frac{(y-2)^{2}}{9}=1$
C. $\frac{(y-2)^{2}}{9}-\frac{(x+3)^{2}}{49}=1$
D. $\frac{(x+3)^{2}}{49}-\frac{(y-2)^{2}}{9}=1$

Center: $(-3,2)$

$$
a=3
$$

slope of anyortote ir $\pm \frac{3}{4}$

$$
\begin{gathered}
b=4 \\
\frac{(y-2)^{2}}{9}-\frac{(x+3)^{2}}{16}=1
\end{gathered}
$$

9. (6points) Evaluate $\cos \left(\frac{\pi}{6}+\sin ^{-1}\left(-\frac{5}{7}\right)\right)$ exactly and simplify your answer.

$$
\begin{aligned}
& \text { 9. (6points) Evaluate } \cos \left(\frac{\pi}{6}+\sin ^{-1}\left(-\frac{5}{7}\right)\right) \text { exactly and simplify your answer. } \\
& \cos \left(\frac{\pi}{6}+\sin ^{-1}\left(\frac{-5}{7}\right)\right)=\cos \frac{\pi}{6} \cos \left(\sin ^{-1}\left(-\frac{5}{7}\right)\right)-\sin \left(\frac{\pi}{6}\right) \sin \left(\sin ^{-1}\left(-\frac{5}{7}\right)\right) \\
& \pi=\sqrt{3} \\
& \pi \quad \text { (2) } \cos \left(\sin ^{-1}\left(-\frac{5}{7}\right)\right)
\end{aligned}
$$

(1)

$$
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}
$$

$$
\text { (2) } \cos \left(\sin ^{-1}\left(-\frac{5}{7}\right)\right)
$$

(4)

$$
\sin \left(\sin ^{-1}\left(-\frac{5}{7}\right)\right)=\frac{-\frac{5}{7}}{7}
$$

$$
\cos \left(\frac{\pi}{6}+\sin ^{-1}\left(-\frac{5}{1}\right)\right)=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{24}}{7}-\left(\frac{1}{2}\right)\left(-\frac{5}{7}\right)
$$

$$
=\frac{\sqrt{12}}{14}+\frac{5}{14}=\frac{\sqrt{12}+5}{14}
$$

$$
=\frac{6 \sqrt{2}+5}{14}
$$

Answer: \square $\frac{6 \sqrt{2}+5}{14}$ or $\frac{\sqrt{72}+5}{14}$ is fine
10. (6 points) Find all solutions to the equation: $\cos (2 x)+\sin ^{2}(x)=\cos (x)$

$$
\begin{aligned}
& \cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x) \\
& \cos (2 x)+\sin ^{2}(x)=\cos (x) \\
& \cos ^{2}(x)-\sin ^{2}(x)+\sin ^{2}(x)=\cos x \\
& \cos ^{2}(x)=\cos (x) \\
& \cos ^{2}(x)-\cos (x)=0 \\
& \cos (x)(\cos (x)-1)=0 \\
& \operatorname{cus}(x)=0_{\sqrt{ }} \text { or } \cos (x)-1=0 \\
& \cos (x)=1 \\
& x=\pi / 2, \frac{3 \pi}{2}, ~ x=\begin{array}{c}
0 \\
+ \\
2 \pi h
\end{array} \\
& x=\pi / 2+2 \pi^{h}, \quad 3 \frac{\pi}{2} \times 2 \pi^{h}, \quad 0+2 \pi h \\
& \text { OR } \\
& x=\pi / 2+\pi h, 2 \pi k
\end{aligned}
$$

Answer:

$$
\frac{\pi}{2}+2 \pi h, \frac{3 \pi}{2}+2 \pi h, 2 \pi h
$$

11. (6 points) Find and simplify the difference quotient for $f(x)=x^{2}-5 x+3$.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-5(x+h)+3-\left(x^{2}-5 x+3\right)}{h} \\
& \text { (do not need } \\
& \text { to write iris } \\
& \text { for foll } \\
& =\frac{x^{2}+2 x h+h^{2}-5 x-5 h+3-2 x^{2}+8 x-3}{h} \\
& =\frac{2 x h+h^{2}-5 h}{h}=\frac{h(2 x+h-5)}{h} \text {. } \\
& =2 x+4-5
\end{aligned}
$$

Answer: $2 x+h-5$
12. (6 points) Find the exact value of $\sin \left(15^{\circ}\right)$. Simplify your answer.

Method 1:

$$
15^{\circ}=45^{\circ}-30^{\circ}
$$

$$
\left.\sin \left(15^{\circ}\right)=\sin 145^{\circ}-30^{\circ}\right)
$$

$$
\begin{aligned}
& \sin \left(15^{\circ}\right)=\sin 45^{\circ}-30 \\
& =\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} v v \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \vee v\left(\begin{array}{l}
\frac{1}{2} \cos ^{2} \\
\operatorname{eon}^{2}+2 \\
\operatorname{tris}^{2}
\end{array}\right) \\
& =\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
& \text { method 2: } \\
& \begin{aligned}
15^{\circ} & =\frac{30^{\circ}}{2} \\
\sin \left(15^{\circ}\right) & =\sin \left(\frac{30^{\circ}}{2}\right)= \pm \sqrt{1-\frac{\cos 30^{\circ}}{2}} \\
& =\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}
\end{aligned}
\end{aligned}
$$

$$
=\sqrt{\frac{\frac{2}{2}-\frac{\sqrt{3}}{2}}{2}}
$$

$$
=\sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2 / 1}}
$$

$$
=\sqrt{2-\frac{\sqrt{3}}{2} \cdot \frac{1}{2}}
$$

$$
=\sqrt{\frac{2-\frac{\sqrt{3}}{4}}{4}}
$$

13. (6 points) A tiny but horrible alien is standing at the top of the Eiffel Tower (which is 324 meters tall) and he is threatening to destroy the city of Paris! He can see Agent J standing on the ground and the angle of depression from the alien to Agent J is 80°. How far away is Agent J from the base of the Eiffel Tower? Write your answer in a form that could be typed into a calculator to get a numerical answer.

$$
\begin{aligned}
& \tan 10^{\circ}=\frac{x}{324} \\
& x=324 \tan 10^{\circ} \\
& V V
\end{aligned}
$$

\square
14. (6 points) A boat sailing due north at a rate of 14 mph records the bearing of a lighthouse as $N 8^{\circ} E$. Two hours later, the bearing of he same lighthouse is $N 40^{\circ} E$. Find the distance d from the boat to the lighthouse at the time of the second sighting. Leave your answer in a form that can be typed into a calculator to get a numerical answer.

$$
\begin{aligned}
& \frac{d}{\sin 8^{\circ}}=\frac{28}{\sin 32^{\circ}} \\
& d=28 \frac{\sin 8^{\circ}}{\sin 32^{\circ}}
\end{aligned}
$$

$$
\text { I pt each aisle of } \Delta \quad(3 \text { pts total) }
$$

l pt idea of Law of sines
[pt correct ul of Law of sires
-1 "f compute wrong distance - from st sishtiy point not $2^{n d}$

$$
\text { Answer: } 28 \frac{\sin 8^{\circ}}{\sin 32^{\circ}}
$$

15. (6 points) In tracking the relative location of two aircraft, a controller determines that the distance from the station to the first aircraft is 8 miles and the distance to the second aircraft is 7 miles. If the angle between the controller's sight lines to the two aircraft is 120°, how far apart are the two planes? Simplify your answer.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos 120^{\circ} \\
& c^{2}=8^{2}+7^{2}-2 \cdot 8 \cdot 7 \cos 120^{\circ} \\
& c^{2}=6^{4}+49-2 \cdot 56 \cdot\left(-\frac{1}{2}\right) \\
& \begin{array}{l}
\operatorname{evoluatios} \\
\cos \left(120^{\circ}\right)=-\frac{1}{2}
\end{array} \\
& c^{2}=6^{4}+49+56=169 \\
& c=\sqrt{169}=13
\end{aligned}
$$

Answer: \square
16. (6 points) Prove the identity $\frac{\cos (x)}{1-\sin (x)}=\sec (x)+\tan (x)$

$$
\begin{aligned}
\frac{\cos (x)}{1-\sin (x)}= & \frac{\cos (x)}{1-\sin (x)} \cdot \frac{(1+\sin x)}{(1+\sin x)} \\
& =\frac{\cos (x)(1+\sin x)}{1-\sin ^{2} x} \\
= & \frac{\cos (x)(1+\sin x)}{\cos ^{2}(x)} \\
= & \frac{1+\sin (x)}{\cos (x)} \\
= & \frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)} \\
& =\sec (x) \times \tan (x)
\end{aligned}
$$

2 pts multiply is by conj or somethy equivalent

2 pts using pytheg id to get
from $1-\sin ^{2}(x)$ to $\cos ^{2}(x)$

2 pts translation b fun
$\sec (x)+\tan (x)$
む
$\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}$
17. (6 points) A window above a doorway is constructed in the shape of the top half on an ellipse, as shown in the figure. The window is 2 feet tall at its highest point and 8 feet wide at the bottom. Find the height of the window 1 foot from the center of the base.

$$
\frac{x^{2}}{4^{2}} \times \frac{y^{2}}{2^{2}}=1
$$

$$
\begin{aligned}
& \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 \quad 3 \text { pts eqn } \quad(-1 \text { it } \quad \text { solve for } y \quad 1 \text { pt setting } x=1 \\
& \text { when } x=1 \quad 2
\end{aligned}
$$

$(-1$ if use $a=8$ instead of 4$)$

$$
\begin{aligned}
& \frac{1^{2}}{16}+\frac{y^{2}}{4}=1 \Rightarrow \frac{y^{2}}{4}=1-\frac{1}{16} \Rightarrow \frac{y^{2}}{4}=\frac{15}{16} \\
& \Rightarrow y^{2}=\frac{15}{16} \cdot 4 \Rightarrow y^{2}=\frac{15}{4} \Rightarrow y=\frac{\sqrt{15}}{2}
\end{aligned}
$$

2 pts solving for y

Equation: \square
18. (8 points) For the function $g(x)=\frac{3-5 x}{2 x+7}$.
(a) Find $g^{-1}(x)$

$$
\begin{gathered}
y=\frac{3-5 x}{2 x+7} \\
\left.x=\frac{3-5 y}{2 y+7} \right\rvert\, p^{+} \\
x(2 y+7)=3-5 y \\
2 x y+7 x=3-5 y \\
2 x y+5 y=3-7 x \\
g^{-1}(x)=\frac{3-7 x}{2 x+5}
\end{gathered}
$$

(b) Find the domain and range of of $g(x)$ and $g^{-1}(x)$. Write your answers in interval notation. domain of $g(\lambda)$

$$
\begin{aligned}
& 2 x+1 \neq 0 \\
& 2 x \neq-1 \\
& x \neq-1 / 2
\end{aligned}
$$

Domain of $g(x)$

$$
\left.\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right) \quad \right\rvert\, p^{+}
$$

domain of $g^{-1}(x)$

$$
\begin{aligned}
2 x+5 & \neq 0 \\
2 x & \neq-5 \\
x & \neq-\frac{5}{2}
\end{aligned}
$$

Domain of $g^{-1}(x)$

$$
\left.\left(-\infty,-\frac{5}{2}\right) \cup\left(-\frac{5}{2}, \infty\right) \quad \right\rvert\, p^{t}
$$

Range of $g(x)$

$$
\left(-\infty,-\frac{5}{2}\right) \cup\left(-\frac{5}{2}, \infty\right)
$$

$l p^{t}$
full credit for woos anger that agrees with domain of $g^{\prime \prime}(x)$

Range of $g^{-1}(x)$
$\left(-\infty,-\frac{7}{2}\right) \cup\left(-\frac{7}{2}, \infty\right) \quad 1$ pt
full credit for wrong anser that ag rees with domain of $g(x)$
19. (6 points) Find the vertex, focus, and directrix for the parabola given by the equation $x^{2}+6 x+8 y-23=0$

$$
\begin{aligned}
& x^{2}+6 x=-8 y+23 \\
& x^{2}+6 x+9=-8 y+23+9 \\
& (x+3)^{2}=-8 y+32 \\
& (x+3)^{2}=-8(y-4) \quad p=-2
\end{aligned}
$$

Vertex: $(-3,4)$

Focus: $(-3,2) \quad 1 p^{+}$

Directrix: \square

$$
y=6
$$

20. (6 points) True or False and justify your answer.
(a) $\sin (3 \theta)=3 \sin \theta \cos \theta$
A. True B. False

Justification

$$
\begin{aligned}
& \text { For } \theta=\frac{\pi}{3} \\
& \sin \left(3 \cdot \frac{\pi}{3}\right)=\sin (\pi)=0 \\
& 3 \sin \frac{\pi}{3} \cos \frac{\pi}{3}=3 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}=3 \frac{\sqrt{3}}{4} \neq 0
\end{aligned}
$$

(b) $\cos ^{-1}\left(\cos \left(193^{\circ}\right)\right)=193^{\circ}$
A. True B. False

Justification
$\cos ^{-1}$ always gives an angle stun $0^{\circ} \mathbb{\$ 1 8 0 ^ { \circ }}$ but 193° is not between $0^{\circ} \& 180^{\circ}$

In fort, $\cos ^{-1}\left(\cos 193^{\circ}\right)=167^{\circ} \quad 167^{\circ}$ bIc 167° is btween $0^{\circ} \& 180^{\circ}$ and has the sase corine as 193°

FORMULAS

$$
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

$$
\tan ^{2}(\theta)+1=\sec ^{2}(\theta)
$$

$$
\cot ^{2}(\theta)+1=\csc ^{2}(\theta)
$$

$\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$
$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
$\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$

$$
\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)
$$

$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

$$
\begin{aligned}
& \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

$$
\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}
$$

$$
\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}
$$

$$
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}
$$

$$
4 p(y-k)=(x-h)^{2}
$$

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

$$
4 p(x-h)=(y-k)^{2}
$$

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
c^{2}=a^{2}-b^{2}
$$

$$
c^{2}=a^{2}+b^{2}
$$

$$
\begin{array}{ll}
x=r \cos (\theta) & y=r \sin (\theta) \\
r^{2}=x^{2}+y^{2} & \tan (\theta)=\frac{y}{x}
\end{array}
$$

