Math 231: Test 3A

Fall 2016

Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1-11.
- Since you have test version A, please code the "Sequence Number" on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you MUST SHOW WORK for full and partial credit unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last name

PID \qquad

UNC Email \qquad

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: \qquad

For the True False questions, assume all functions have first and second derivatives that exist and are continuous on $(-\infty, \infty)$. Remember that True means always true, and False means sometimes or always false.

1. (2 pts) If $f^{\prime}(5)=0$ and $f^{\prime \prime}(5)=2$, then f has a local max at $x=5$.
A. True
B. False
f has a local min $\sin u f$ is concave up at $x=2$
2. (2 pts) Suppose $f(x)>0$ and and $f(x)$ is decreasing on [0,5]. A Riemann sum using left endpoints will be an overestimate of $\int_{0}^{5} f(x) d x$.
A. True
B. False

3. (2 pts) Suppose $F(x)$ is an antiderivative of $f(x)$. Then $\sin (F(x))$ is an antiderivative of $\cos (f(x))$.
A. True
B. False

$$
\begin{aligned}
\frac{d}{d x} \sin (F(x)) & =\cos (F(x)) \cdot F^{\prime}(x) \\
& =\cos (F(x)) f(x)
\end{aligned}
$$

4. $\left(2\right.$ pts) If $f(x)<g(x)$ on $[0,10]$, then $\int_{0}^{10} f(x)-g(x) d x<0$ net $\operatorname{cosch}(x)$)
(A.) True
B. False
5. (2 pts) If $f^{\prime}(1)=0$ and $f^{\prime}(3)=0$, then $f(c)=0$ for some c between 1 and 3 .
A. True $f^{\prime \prime}(c)=0$ bot rit t nee $f(c)$
(B.) False eng. $f(x)=\cos (2 \pi x)+\omega 0$

$$
\begin{aligned}
& f^{\prime \prime}(c)=0 \text { but rit net } \\
& \text { e.g. } f(x)=\cos (2 \pi x)+\cos
\end{aligned}
$$

$$
\int_{0}^{20} f(x)-g(x) d x
$$

6. (5 pts) For a differentiable function $f(x), f(1)=5$ and $f(2)=5$ and $f(4)=6.5$. Which of the following must be true about the derivative $f^{\prime}(x)$?
(1) $f^{\prime}(x)=0.5$ for some x-value
7. $f^{\prime}(x)=1.5$ for some x-value
8. $f^{\prime}(x)=2$ for some x-value
9. $f^{\prime}(x)=5.75$ for some x-value
10. None of these have to be true.

$$
\frac{f(4)-f(1)}{4-1}=\frac{1.5}{3}=0.5
$$

$\Rightarrow f^{\prime}(0)=0.5$ for some
c between $1 \$ 4$
7. (5 pts) If $\int_{2}^{5}(2 f(x)-6) d x=-10$, then what is $\int_{2}^{5} f(x) d x$?
C. 4
D. 8

$$
\begin{aligned}
& \begin{array}{l}
\text { A. -4 } \\
\text { B. }-2 \\
\text { () } 4
\end{array}-10=\int_{2}^{5} 2 f(x)-6 d x=2 \int_{2}^{5} f(x) d x-\int_{2}^{5} 6 d x \\
& \begin{aligned}
-10 & =\int_{2}^{5} 2 f(x)-6 d x=2 \int_{2}^{5} f(x) d x-\int_{2}^{5} 6 d x \\
& =2 \int_{2}^{5} f(x) d x-18 \\
\Rightarrow 8 & =2 \int_{2}^{5} f\left(\sin d x \Rightarrow \int_{2}^{5} f(x) d x=4\right.
\end{aligned}
\end{aligned}
$$

E. 10
8. (5 pts) Suppose that $g(x)$ is a continuous function. Some of the values of $g(x)$ are given in the table below.

x	-1	1	3	5
$g(x)$	-2	3	5	6

Use a Riemann sum and right endpoints to estimate $\int_{-1}^{5} g(x) d x$.
A. 12
B. 14

$$
2 \cdot 3+2 \cdot 5 \times 2 \cdot 6=2(3+5+6)=28
$$

C. 24
(D) 28
E. 48
9. (5 pts) Express $\int_{3}^{8}(4-x) d x$ as the limit of a Riemann sum using right endpoints.
A. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-\frac{5 i}{n}\right)$

$$
\Delta x=\frac{5}{n}
$$

B. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(7-\frac{5 i}{n}\right)$

$$
x: 4=3+\frac{5 i}{n}
$$

(C. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1-\frac{5 i}{n}\right) \frac{5}{n}$
D. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(3-\frac{5 i}{n}\right) \frac{5}{n}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-x_{i}^{i}\right) \Delta x \\
& \left.=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[4-13+\frac{5 i}{n}\right)\right] \frac{5 i}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[1-\frac{5 i}{n}\right] \frac{5 i}{r}
\end{aligned}
$$

E. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-\frac{5 i}{n}\right) \frac{5}{n}$
10. (5 pts) The figure shows the graphs of $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$. Which one is which?

The derivative of I is positive for large x, so the derivative of t is not II or III. Therefore, I is $f^{\prime \prime}$ The derianile of II is I So 左 is t'
A. $f(x):$ I, $f^{\prime}(x)$: III, $f^{\prime \prime}(x)$: II
B. $f(x):$ II, $f^{\prime}(x): \mathrm{I}, f^{\prime \prime}(x):$ III
C. $f(x)$: II, $f^{\prime}(x):$ III, $f^{\prime \prime}(x)$: I
D. $f(x)$: III, $f^{\prime}(x):$ I, $f^{\prime \prime}(x)$: II
(E. $f(x):$ III, $f^{\prime}(x)$: II, $f^{\prime \prime}(x)$: I
11. (5 pts) Given the graph of the DERIVATIVE $f^{\prime}(x)$ defined on the interval $[-4,4]$ and drawn below, find the intervals) on which the original function $f(x)$ is concave up.

B. $(0,4)$
C. $(-2.2,2.2)$
D. $(-4,-2.2) \cup(2.2,4)$
E. $f(x)$ is never concave up

$$
\begin{aligned}
& f(x) \text { concave up } \\
& \Leftrightarrow f^{\prime \prime}(x)>0 \\
& \Leftrightarrow f^{\prime}(x) \text { increasing } \\
& \text { so }(-4,0)
\end{aligned}
$$

12. (16 pts) Suppose $f(x)$ is a differentiable function defined for all x. The derivative and second derivative of $f(x)$ are given by:
$f^{\prime \prime}(x)-0$ whee $4 x+10=0$

$$
f^{\prime}(x)=3(x+4)(x+2)^{1 / 3} f^{\prime \prime} \Theta \quad \leftrightarrow \leftrightarrow
$$

$x=\frac{-5}{2}$

$$
f^{\prime \prime}(x)=\frac{4 x+10}{(x+2)^{2 / 3}}
$$

Answer the following questions, and write "None" if the requested feature does not occur.
(a) What are the critical number (s) for $f(x)$?

$$
x=-4,-2
$$

(b) What are the critical numbers) for $f^{\prime}(x)$?

$$
x=-5 / 2,-2 \quad \cup \checkmark
$$

(c) At what x-values does $f(x)$ have local maxes)? local $\min (\mathrm{s})$?

(d) At what x -values does $f(x)$ have inflection points)?
$x=-5 / 2 \quad \checkmark \checkmark$
(e) On what intervals) is $f(x)$ decreasing?

Answer:

(f) On what intervals) is $f(x)$ concave down?

(g) On what intervals) is $f(x)$ both decreasing and concave down?

13. (16 pts) Suppose $f^{\prime \prime}(x)=\frac{3}{\sqrt{x}}+5 \cos (x), f(0)=0$, and $f(\pi)=10$. Find $f(x)$.

$$
\begin{aligned}
& f^{\prime \prime}(x)=3 x^{-1 / 2}+5 \cos (x) \\
& f^{\prime}(x)=\frac{3 x^{1 / 2}}{\frac{1}{2}}+5 \sin (x)+c / 2 \\
& f^{\prime}(x)=6 x^{1 / 2}+5 \sin (x)+c \\
& f(x)=6 x^{3 / 2} \cdot \frac{2}{3}-5 \cos (x)+c x+D \\
& f(x)=4 x^{3 / 2}-5 \cos (x)+c x+D \\
& 0=f(0)=4 \cdot 0^{3 / 2}-5 \cos (0)+c \cdot 0+D \\
& 0=-5+D \Rightarrow D=5 v \\
& 10=f(\pi)=4 \cdot \pi^{3 / 2}-5 \cos (\pi)+C \pi+5 \\
& 10=4 \cdot \pi \pi^{3 / 2}+5+c \pi x 5 \\
& \Rightarrow c \pi=-4 \pi^{3 / 2} \Rightarrow c=\frac{4 \pi^{3 / 2}}{\pi}=-4 \pi^{1 / 2}=-4 \sqrt{\pi} \\
& f(x)=4 x^{3 / 2}-5 \cos (x)-4 \sqrt{\pi} x+5
\end{aligned}
$$

Answer:

$$
f(x)=4 x^{3 / 2}-5 \cos (x)-4 \sqrt{\pi}+5
$$

14. (14 pts) Evaluate $\lim _{x \rightarrow \infty}\left(f+\frac{2}{x}\right)^{4 x}$.

$$
\begin{aligned}
& y=\left(1+\frac{2}{x}\right)^{4 x} \\
& \ln y=\ln \left(1+\frac{2}{x}\right)^{4 x} \\
& \ln y=4 x \ln \left(1+\frac{2}{x}\right) \sim \\
& \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} 4 x \ln \left(1+\frac{2}{x}\right)=\lim _{x \rightarrow \infty} \frac{4 \ln \left(1+\frac{2}{x}\right)}{x^{-1}}
\end{aligned}
$$

(-2) if incorrectly in denominator

$$
\text { so } \lim _{x \rightarrow \infty} \ln y=8 \Rightarrow \lim _{x \rightarrow \infty} y=e^{8} v v
$$

Answer: \square e^{8}
15. (14 pts) Pick ONE of the two questions to answer. For credit, you must use calculus in your solution.
(a) On one side of a river 1 mile wide is an electric power station; on the other side, 10 miles upstream, is a factory. It costs $\$ 300$ per mile to run cable over land and $\$ 500$ per mile under water. What value of x in the diagram will give the cheapest way to run cable from the station to the factory? Hint: find distances in terms of x, then convert distances to costs.

(b) You wish to make a cylinder with a base and sides but no top. The cylinder must have surface area of $100 \mathrm{~cm}^{2}$. Give the dimensions of the cylinder
radius
a)

$$
6 p^{2+5}
$$

$$
\begin{aligned}
& C(x)=500 \sqrt{1+x^{2}}+300(10-x) \mid B V V^{2}=\pi r^{2} h \\
& \text { on }\left.[0,10]\right|_{00} ^{B N}=A=\pi r^{2} h+2 \pi r h \\
& c(x)=500 \sqrt{1+x^{2}} \times 3000-300 x \\
& C^{\prime}(x)=500 \cdot \frac{1}{2}\left(1+x^{2}\right)^{-1 / 2} \cdot 2 x-300 \\
& 4 \text { pts denis } \\
& C^{\prime}(x)=\frac{500 x}{\sqrt{1+x^{2}}}-300=0 \\
& \begin{array}{l}
\Rightarrow \frac{500 x}{\sqrt{1+x^{2}}}-300=0 \Rightarrow \frac{500 x}{\sqrt{1+x^{2}}}=300 \\
\Rightarrow 500 x=300 \sqrt{1+x^{2}} \Rightarrow 5 x=3 \sqrt{1+x^{2}}
\end{array} \\
& \Rightarrow 500 x=300 \sqrt{1+\lambda^{2}} \Rightarrow 16 x^{2}=9 \Rightarrow x= \pm \frac{3}{4}
\end{aligned}
$$

