Math 231: Test 3A

Fall 2016
Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1-11.
- Since you have test version A, please code the "Sequence Number" on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you MUST SHOW WORK for full and partial credit unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last name \qquad

PID \qquad

UNC Email \qquad

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: \qquad

For the True False questions, assume all functions have first and second derivatives that exist and are continuous on $(-\infty, \infty)$. Remember that True means always true, and False means sometimes or always false.

1. (2 pts) If $f^{\prime}(5)=0$ and $f^{\prime \prime}(5)=2$, then f has a local max at $x=5$.
A. True
B. False
2. (2 pts) Suppose $f(x)>0$ and and $f(x)$ is decreasing on [0,5]. A Riemann sum using left endpoints will be an overestimate of $\int_{0}^{5} f(x) d x$.
A. True
B. False
3. (2 pts) Suppose $F(x)$ is an antiderivative of $f(x)$. Then $\sin (F(x))$ is an antiderivative of $\cos (f(x))$.
A. True
B. False
4. (2 pts) If $f(x)<g(x)$ on $[0,10]$, then $\int_{0}^{10} f(x)-g(x) d x<0$
A. True
B. False
5. (2 pts) If $f^{\prime}(1)=0$ and $f^{\prime}(3)=0$, then $f(c)=0$ for some c between 1 and 3 .
A. True
B. False
6. (5 pts) For a differentiable function $f(x), f(1)=5$ and $f(2)=5$ and $f(4)=6.5$. Which of the following must be true about the derivative $f^{\prime}(x)$?
7. $f^{\prime}(x)=0.5$ for some x-value
8. $f^{\prime}(x)=1.5$ for some x-value
9. $f^{\prime}(x)=2$ for some x-value
10. $f^{\prime}(x)=5.75$ for some x-value
11. None of these have to be true.
12. (5 pts) If $\int_{2}^{5}(2 f(x)-6) d x=-10$, then what is $\int_{2}^{5} f(x) d x$?
A. -4
B. -2
C. 4
D. 8
E. 10
13. (5 pts) Suppose that $g(x)$ is a continuous function. Some of the values of $g(x)$ are given in the table below.

x	-1	1	3	5
$g(x)$	-2	3	5	6

Use a Riemann sum with $\Delta x=2$ and right endpoints to estimate $\int_{-1}^{5} g(x) d x$.
A. 12
B. 14
C. 24
D. 28
E. 48
9. (5 pts) Express $\int_{3}^{8}(4-x) d x$ as the limit of a Riemann sum using right endpoints.
A. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-\frac{5 i}{n}\right)$
B. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(7-\frac{5 i}{n}\right)$
C. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1-\frac{5 i}{n}\right) \frac{5}{n}$
D. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(3-\frac{5 i}{n}\right) \frac{5}{n}$
E. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-\frac{5 i}{n}\right) \frac{5}{n}$
10. (5 pts) The figure shows the graphs of $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$. Which one is which?

A. $f(x)$: I, $f^{\prime}(x)$: III, $f^{\prime \prime}(x)$: II
B. $f(x)$: II, $f^{\prime}(x):$ I, $f^{\prime \prime}(x)$: III
C. $f(x)$: II, $f^{\prime}(x):$ III, $f^{\prime \prime}(x):$ I
D. $f(x)$: III, $f^{\prime}(x):$ I, $f^{\prime \prime}(x)$: II
E. $f(x)$: III, $f^{\prime}(x)$: II, $f^{\prime \prime}(x)$: I
11. (5 pts) Given the graph of the DERIVATIVE $f^{\prime}(x)$ defined on the interval $[-4,4]$ and drawn below, find the interval(s) on which the ORIGINAL FUNCTION $f(x)$ is concave up.

A. $(-4,0)$
B. $(0,4)$
C. $(-2.2,2.2)$
D. $(-4,-2.2) \cup(2.2,4)$
E. $f(x)$ is never concave up
12. (16 pts) Suppose $f(x)$ is a differentiable function defined for all x. The derivative and second derivative of $f(x)$ are given by:

$$
\begin{gathered}
f^{\prime}(x)=3(x+4)(x+2)^{1 / 3} \\
f^{\prime \prime}(x)=\frac{4 x+10}{(x+2)^{2 / 3}}
\end{gathered}
$$

Answer the following questions, and write "None" if the requested feature does not occur.
(a) What are the critical number(s) for $f(x)$?
$x=\square$
(b) What are the critical number(s) for $f^{\prime}(x)$?
$x=\square$
(c) At what x-values does $f(x)$ have local max(es)? local min(s)?
MAX at $x=\square \operatorname{MIN}$ at $x=\square$
(d) At what x-values does $f(x)$ have inflection point(s)?
$x=\square$
(e) On what interval(s) is $f(x)$ decreasing?

Answer: \square
(f) On what interval(s) is $f(x)$ concave down?

Answer: \square
(g) On what interval(s) is $f(x)$ both decreasing and concave down?

Answer: \square
13. (16 pts) Suppose $f^{\prime \prime}(x)=\frac{3}{\sqrt{x}}+5 \cos (x), f(0)=0$, and $f(\pi)=10$. Find $f(x)$.
\square
$f(x)=\square$
14. (14 pts) Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{4 x}$.

Answer: \square
15. (14 pts) Pick ONE of the two questions to answer. For credit, you must use calculus in your solution.
(a) On one side of a river 1 mile wide is an electric power station; on the other side, 10 miles upstream, is a factory. It costs $\$ 300$ per mile to run cable over land and $\$ 500$ per mile under water. What value of x in the diagram will give the cheapest way to run cable from the station to the factory? Hint: find distances in terms of x, then convert distances to costs.

(b) You wish to make a cylinder with a base and sides but no top. The cylinder must have surface area of $100 \mathrm{~cm}^{2}$. Give the radius of the cylinder that will maximize volume.

Answer: \square

