Math 231: Test 3A

Spring 2016

Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1-12.
- Since you have test version A, please code the "Sequence Number" on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you MUST SHOW WORK for full and partial credit unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last name

PID

UNC Email

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: \qquad

1. (2 pts) True or False: $\int_{3}^{7} f(x) d x=\int_{7}^{3} f(x) d x$
A. True
B. False

$$
\int_{7}^{7} f(x) d x=-\int_{7}^{3} f(x) d x
$$

f is differentiable on $(-4,4)$ and cartanous on $[-4,4]$
2. (2 pts) True or False: $\operatorname{If}^{\prime} f(-4)=-1$ and $f(4)=9$, then $f^{\prime}(x)>1$ for some x value with $|x|<4$.
slope of secant line $=\frac{f(4)-f(-4)}{4-(-4)}=\frac{9-(-1)}{8}=\frac{10}{8}=\frac{5}{4}$
3. (2 pts) True or False: Suppose f is a function whose second derivative $f^{\prime \prime}$ exists and is continuous. If $f^{\prime}(2)=0$ and $f^{\prime \prime}(2)<0$, then f has a local minimum at $x=2$. False by the second derivatix test - there is a
A. True false cal max not a loco mir.
B. False Note: $f^{\prime \prime}(2)<0$ means concave down
4. (2 pts) True or False: For a continuous function $f(x)$, if $f^{\prime}(x)<0$ for $x<0$ and $f^{\prime}(x)>0$ for $x>0$, then f has an absolute minimum at $x=0$.
(A) True
B. False

There ore no other critical points where f could charection
5. (2 pts) If $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} g(x)=\infty$, then $\lim _{x \rightarrow \infty} f(x) \cdot g(x)=\lim _{x \rightarrow \infty} f^{\prime}(x) \cdot g^{\prime}(x)$, provided that this second limit exists.
A. True For example, the $f(x)=\frac{1}{x} g(x)=x$
(B.) False $\lim _{x \rightarrow \infty} f(x) \cdot g|x|=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot x=0$ but $\lim _{x \rightarrow \infty} f^{\prime}(x) \cdot g^{\prime}(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f^{\prime}(x) \cdot 9 \\
& =\lim _{x \rightarrow \infty}-\frac{1}{x} \cdot 1=0 \\
& \text { oncaye un? }
\end{aligned}
$$

6. (5 pts) On what interval is $f(x)=3 x^{3}-36 x$ both increasing and concave up?
A. $(-\infty, 2)$
B. $(-2,0)$

$$
\begin{aligned}
& f(x)=3 x^{3}-36 x \text { both increasing and concave up? } \\
& f^{\prime}(x)=9 x^{2}-36 \quad 9 x^{2}-36=0 \Rightarrow 9\left(x^{2}-4\right)=0 \\
& f^{\prime \prime}(x)=18 x \quad 9(x-2)(x+2)=0 \Rightarrow x=2,-2 \\
& \quad 18 x=0 \Rightarrow x=0
\end{aligned}
$$

C. $(0,2)$
(D.) $(2, \infty)$

7. (5 pts) Express $\int_{2}^{7} x d x$ as the limit of a Riemann sum using right endpoints.
A. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{5 i}{n}$
B. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{25 i}{n^{2}}$
C. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2+\frac{5 i}{n}$

$$
\text { (D.) } \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{10}{n}+\frac{25 i}{n^{2}}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right) \\
&=\lim _{n \rightarrow \infty} \sum_{i=1} \frac{5}{n}\left(2+\frac{5}{n} i\right) \\
&=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{10}{n}+\frac{25}{n^{2}} i
\end{aligned}
$$

8. (5 pts) Use the graph of $y=f(x)$ to evaluate $\int_{-2}^{4} f(x) d x$.

(B. 4
C. 6
D. 8
9. (5 pts) Estimate $\int_{0}^{4} \frac{60}{x+1} d x$ using two rectangles and midpoints for sample points.
A. 45

$$
\begin{aligned}
& \Delta x=2 \quad x_{1}=1 \quad x_{2}=3 \\
& 2 \cdot f(1)+2 \cdot f(3)=2 \cdot \frac{60}{2}+2 \cdot \frac{60}{4} \\
&=90
\end{aligned}
$$

B. 64
(C. 90
D. 112
E. 160

10. (5 pts) Suppose that we are using Newton's method to estimate $\sqrt{2}$ using the formula $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ and a simple "four function" calculator that does addition, subtraction, multiplication, and division. Which function should we use for $f(x)$?
A. $f(x)=\sqrt{x}$

$$
x=\sqrt{2}
$$

B. $f(x)=x^{2}$

$$
\Rightarrow x^{2}=2
$$

C. $f(x)=\sqrt{x}-\sqrt{2}$
$\Rightarrow x^{2}-2=0$
D. $f(x)=x^{2}-2$
use $f(x)=x^{2}-2$
11. (5 pts) Suppose that we wish to use Newton's method to estimate the RIGHTMOST of the two x-intercepts shown in this graph. Which is the best choice for a starting value x_{1} ?

A. 0
B. 1
C. 2
(D) 3

The treat line at $x=3$
has an x-intercept very close to the one we are loony for, while the forsent live at $x=2$
is horizontal or close to horizontal and won't work.
The torrent line at $x=1$ will hove $a_{4} x$-interest close to the left mort $\frac{4}{x}$-interest instead of the rightmost, and the torment lie at $x=0$ is also close to horizontal.
12. (5 points) The function $f(x)=\sin (x)-\cos (x)+x$ has inflection points at what x-values on the interval $[0,2 \pi]$?
A. $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$

$$
f^{\prime}(x)=\cos (x)+\sin (x)+1
$$

B. $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$

$$
f^{\prime \prime}(x)=-\sin (\lambda)+\cos (\lambda)
$$

C. $\frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$

$$
f^{\prime \prime}(x)=0 \Leftrightarrow \sin (x)=\cos (x)
$$

D. $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$, and $\frac{7 \pi}{4}$

$$
\Rightarrow x=\pi / 4 \text { or } 5 \pi / 4
$$

E. No inflection points.
13. (7 pts) Find the general antiderivative of $f(x)=\frac{3 \sqrt{x}+1}{x}$.

$$
\begin{aligned}
& f(x)=\left(3 x^{1 / 2}+1\right) x^{-1} \\
& f(x)=3 x^{-1 / 2}+x^{-1} \\
& F(x)=\frac{3 x^{1 / 2}}{1 / 2}+\ln |x|+C
\end{aligned}
$$

-1 if no $+C$
-1 if $\ln (x)$ instead of $\ln |x|$

Answer: \square $6 \sqrt{x}+\ln |x|+c$
14. $(12 \mathrm{pts})$ Evaluate $\lim _{x \rightarrow 0^{+}}\left(e^{2 x}+4 x\right)^{1 / x}$.
set $y=\left(e^{2 x}+4 x\right)^{1 / x}$
set

$$
\begin{aligned}
& \text { set } y=\left(e^{1 / 4 x)}\right. \\
& \ln y=\ln \left(e^{2 x}+4 x\right)^{1 / x} \\
& \ln y=\frac{1}{x} \ln \left(e^{2 x}+4 x\right) \\
& \ln y=\frac{\ln \left(e^{2 x}+4 x\right)}{x} \\
& \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(e^{2 x}+4 x\right)}{x} \quad \frac{0}{0} \\
&=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{e^{2 x+4 x}} \cdot 2 e^{2 x}+4}{12} \\
& L^{\prime} H \\
&=\lim _{x \rightarrow 0^{+}} \frac{2 e^{2 x+4}}{e^{2 x+4 x}}=\frac{6}{1}=6
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \lim _{x \rightarrow 0^{+}} y & =\lim _{x \rightarrow 0^{+}} e^{\ln y} \\
& =e^{6}
\end{aligned}
$$

Answer: \square e^{6}
15. (12 pts) Sketch a graph of a function $f(x)$ with the following properties.

- $f(0)=0$.
- $\lim _{x \rightarrow \infty} f(x)=2$
- $\lim _{x \rightarrow-\infty} f(x)=3 \quad \checkmark$
- $f^{\prime}(x)<0$ for $x<2$ and $f^{\prime}(x)>0$ for $x>2$
- $f^{\prime \prime}(x)<0$ for $x<0$ and for $x>3$ and $f^{\prime \prime}(x)>0$ for $0<x<3$
- f has an absolute minimum value of $-2 \checkmark$

16. (12 pts) Suppose $f^{\prime \prime}(x)=4 x+\cos (x), f^{\prime}(0)=2$, and $f(0)=5$. Find $f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{4 x^{2}}{2}+\sin (x)+C \\
& f^{\prime}(x)=2 x^{2}+\sin (x)+C \\
& 2=f^{\prime}(0)=2 \cdot 0^{2}+\sin (0)+C \Rightarrow C=2 \\
& f^{\prime}(x)=2 x^{2}+\sin (x)+2 \\
& f(x)=\frac{2 x^{3}}{3}-\cos (x)+2 x+D \\
& 5=f(0)=\frac{2 \cdot 0^{3}}{3}-\cos (0)+2 \cdot 0+D \\
& \Rightarrow 5=-1+D \rightarrow D=6 \\
& f(x)=\frac{2 x^{3}}{3}-\cos (x)+2 x+6
\end{aligned}
$$

Answer: \square

$$
\frac{2 x^{3}}{3}-\cos (x)+2 x+6
$$

17. (12 pts) Pick ONE of the two questions to answer.
(A) Find the x and y coordinates of the points) on the graph of $y=3 \sqrt{x}$, closest to the point $(5,0)$.
(B) You need to make a retangular enclosure with an area of $6000 \mathrm{~m}^{2}$ that is divided into 3 sections by walls parallel to one of its sides. The external walls cost $\$ 3$ per meter in length and the interior walls cost $\$ 2$ per meter in length. What are the dimensions that minimize the cost of the walls?

A)

$$
d^{2}=(x-5)^{2}+y^{2}
$$

$$
\begin{aligned}
& d=(x-5) \\
& d^{2}=(x-5)^{2}+9 x+9 x+9 x
\end{aligned}
$$

$$
d^{2}=x^{2}-10 x+25+9 x
$$

$$
\begin{aligned}
& d^{2}=x^{2}-10 x+25+9 x \\
& f(x)=d^{2}=x^{2}-x+25 \quad \text { interred: }(0, \infty)
\end{aligned}
$$

$$
f^{\prime}(x)=2 x-1=0 \Rightarrow x=\frac{1}{2} u
$$

$$
\begin{aligned}
& C(x)=3 x+3 x+3 y+3 y+2 y+2 y \\
& C(x)=6 x+10 y
\end{aligned}
$$

$$
\begin{aligned}
& x y=6000 \Rightarrow y=\frac{6000}{x} \\
& C(x)=6 x+\frac{60,000}{x} \times \operatorname{ir}[0, \infty) \\
& C^{\prime}(x)=6-\frac{60,000}{x^{2}}
\end{aligned}
$$

$C^{\prime}(x)$ DNE when $x=0$

$$
\begin{aligned}
& c^{\prime}(x)=0 \text { when } 6=60,000 \\
& \Rightarrow x^{2}=10,000 \Rightarrow x= \pm 100 \\
& \Rightarrow x=100 \quad u \mathrm{un}
\end{aligned}
$$

$$
\Rightarrow y=60
$$

do not need to justify that anser is a minimum for full credit.

