Math 231: Test 3A

Spring 2016

Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1 12.
- Since you have test version A, please code the "Sequence Number" on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you MUST SHOW WORK for full and partial credit unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last name Key
PID
UNC Email
Honor Pledge: I have neither given nor received unauthorized help on this exam.
Signature:

- 7. (5 pts) Express $\int_{2}^{\sqrt{x}} dx$ as the limit of a Riemann sum using right endpoints.
 - A. $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{5i}{n}$
 - B. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{25i}{n^2}$
- AX = 7-2 = 5 Xi = 2+5;

 - B. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{25i}{n^2}$ C. $\lim_{n \to \infty} \sum_{i=1}^{n} 2 + \frac{5i}{n}$ D. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{10}{n} + \frac{25i}{n^2}$

-aea = = = 6

8. (5 pts) Use the graph of y = f(x) to evaluate $\int_{0}^{4} f(x)dx$.

- ara = 12.1.3=3
 - 6--2-3=4

- A. 2
- **B.** 4
- C. 6
- D. 8

- 9. (5 pts) Estimate $\int_0^4 \frac{60}{x+1} dx$ using two rectangles and midpoints for sample points. $\Delta x = 2$ $x_1 = 1$ $x_2 = 3$ $2 \cdot f(1) + 2 \cdot f(3) = 2 \cdot \frac{60}{2} + 2 \cdot \frac{60}{4}$
 - A. 45
 - B. 64
 - **(C)**90
 - D. 112
 - E. 160

- E. 160 $\frac{1}{2}$ 3 $\frac{1}{3}$ 10. (5 pts) Suppose that we are using Newton's method to estimate $\sqrt{2}$ using the formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ and a simple "four function" calculator that does addition, subtraction, multiplication, and division. Which function should we use for f(x)?
 - A. $f(x) = \sqrt{x}$
 - B. $f(x) = x^2$

- **シェ** 52
- $= \times^2 = 2$

close to horizontal.

- C. $f(x) = \sqrt{x} \sqrt{2}$ D. $f(x) = x^2 2$ E. $f(x) = x^2 4$ = 0 $x^2 2 = 0$ $c(x) = x^2 2$
- 11. (5 pts) Suppose that we wish to use Newton's method to estimate the RIGHT-MOST of the two x-intercepts shown in this graph. Which is the best choice for a starting value x_1 ?

- A. 0
- B. 1
- C. 2

The transent line at x=3 has an x-intercept very close to the one we are working for while the torsent line at x=2 is horizontal or close to horizontal The torsent line at YEI will have an x-humept close to the coffmort x-intercept instead of the rightmost, and the tensent line at x=0 is also

- 12. (5 points) The function $f(x) = \sin(x) \cos(x) + x$ has inflection points at what x-values on the interval $[0, 2\pi]$?

F'(x) = (os(x) + sin(x)+1

A. $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ B. $\frac{\pi}{4}$ and $\frac{5\pi}{4}$ C. $\frac{5\pi}{4}$ and $\frac{7\pi}{4}$ D. $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$, and $\frac{7\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$

- E. No inflection points.
- 13. (7 pts) Find the general antiderivative of $f(x) = \frac{3\sqrt{x} + 1}{x}$.

$$f(x) = 3x^{-1/2} + x^{-1}$$

$$F(x) = 3x^{-1/2} + x^{-1}$$

$$F(x) = 3x^{-1/2} + x^{-1}$$

6 VX + (n|x|+C

14. (12 pts) Evaluate
$$\lim_{x\to 0^+} (e^{2x} + 4x)^{1/x}$$
.

Set $g = (e^{2x} + 4x)^{1/x}$

In $g = \ln (e^{2x} + 4x)$

In $g = \frac{1}{x} \ln (e^{2x} + 4x)$

In $g = \frac{1}{x} \ln (e^{2x} + 4x)$

In $g = \lim_{x\to 0^+} \frac{\ln (e^{2x} + 4x)}{x}$

It is hy = \lim_{x\to 0^+} \frac{\lim_{x\to 0^+}}{x} \frac{\lim_{x\to 0^+}}{x} \frac{\lim_{x\to 0^+}}{\left(x)} \frac{\lim_{x\to 0^+}}{\lim_{x\to 0^+}} \frac{\lim_{x\to 0^+}} \frac{\lim_{x\to 0^+}}{

- 15. (12 pts) Sketch a graph of a function f(x) with the following properties.
 - f(0) = 0.
 - $\lim_{x \to \infty} f(x) = 2$
 - $\lim_{x \to -\infty} f(x) = 3$
 - f'(x) < 0 for x < 2 and f'(x) > 0 for x > 2
 - f''(x) < 0 for x < 0 and for x > 3 and f''(x) > 0 for 0 < x < 3
 - f has an absolute minimum value of -2

8 ptc total
2 ptr for
3 hope of each
6 4 sechan
as shown

16. (12 pts) Suppose
$$f''(x) = 4x + \cos(x)$$
, $f'(0) = 2$, and $f(0) = 5$. Find $f(x)$.

$$f'(x) = \frac{4x^{2}}{2} + \sin(x) + C$$

$$f'(x) = 2x^{2} + \sin(x) + C$$

$$2 = f'(0) = 2 \cdot 0^{2} + \sin(0) + C = C = 2$$

$$f'(x) = 2x^{2} + \sin(x) + 2$$

$$f(x) = 2x^{3} - \cos(x) + 2x + D$$

$$5 = f(0) = 2 \cdot 0^{3} - \cos(0) + 2 \cdot 0 + D$$

$$5 = -1 + D = D = 6$$

$$f(x) = \frac{2x^3}{3} - \cos(x) + 2x + 6$$

Answer:
$$\frac{2x^3}{3} - \cos(x) + 2x + 6$$

- 17. (12 pts) Pick ONE of the two questions to answer.
 - (A) Find the x and y coordinates of the point(s) on the graph of $y = 3\sqrt{x}$, closest to the point (5,0).
 - (B) You need to make a retangular enclosure with an area of $6000 \ m^2$ that is divided into 3 sections by walls parallel to one of its sides. The external walls cost \$3 per meter in length and the interior walls cost \$2 per meter in length. What are the dimensions that minimize the cost of the walls?

