Math 231: Test 3A

Spring 2016

Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1 12.
- Since you have test version A, please code the "Sequence Number" on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you MUST SHOW WORK for full and partial credit unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last name
PID
UNC Email
Honor Pledge: I have neither given nor received unauthorized help on this exam.
Signature:

- 1. (2 pts) True or False: $\int_{3}^{7} f(x) dx = \int_{7}^{3} f(x) dx$
 - A. True
 - B. False
- 2. (2 pts) True or False: For a function f that is differentiable on $(-\infty, \infty)$, if f(-4) = -1 and f(4) = 9, then f'(x) > 1 for some x value with |x| < 4.
 - A. True
 - B. False
- 3. (2 pts) True or False: Suppose f is a function whose second derivative f'' exists and is continuous. If f'(2) = 0 and f''(2) < 0, then f has a local minimum at x = 2.
 - A. True
 - B. False
- 4. (2 pts) True or False: For a continuous function f(x), if f'(x) < 0 for x < 0 and f'(x) > 0 for x > 0, then f has an absolute minimum at x = 0.
 - A. True
 - B. False
- 5. (2 pts) If $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} f(x) \cdot g(x) = \lim_{x \to \infty} f'(x) \cdot g'(x)$, provided that this second limit exists.
 - A. True
 - B. False
- 6. (5 pts) On what interval is $f(x) = 3x^3 36x$ both increasing and concave up?
 - A. $(-\infty, 2)$
 - B. (-2,0)
 - C. (0,2)
 - D. $(2, \infty)$

- 7. (5 pts) Express $\int_{2}^{7} x \, dx$ as the limit of a Riemann sum using right endpoints.
 - A. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{5i}{n}$
 - B. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{25i}{n^2}$
 - $C. \lim_{n \to \infty} \sum_{i=1}^{n} 2 + \frac{5i}{n}$
 - D. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{10}{n} + \frac{25i}{n^2}$
- 8. (5 pts) Use the graph of y = f(x) to evaluate $\int_{-2}^{4} f(x)dx$.

- A. 2
- B. 4
- C. 6
- D. 8

- 9. (5 pts) Estimate $\int_0^4 \frac{60}{x+1} dx$ using two rectangles and midpoints for sample points.
 - A. 45
 - B. 64
 - C. 90
 - D. 112
 - E. 160
- 10. (5 pts) Suppose that we are using Newton's method to estimate $\sqrt{2}$ using the formula $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ and a simple "four function" calculator that does addition, subtraction, multiplication, and division. Which function should we use for f(x)?
 - A. $f(x) = \sqrt{x}$
 - B. $f(x) = x^2$
 - C. $f(x) = \sqrt{x} \sqrt{2}$
 - D. $f(x) = x^2 2$
 - E. $f(x) = x^2 4$
- 11. (5 pts) Suppose that we wish to use Newton's method to estimate the RIGHT-MOST of the two x-intercepts shown in this graph. Which is the best choice for a starting value x_1 ?

- A. 0
- B. 1
- C. 2
- D. 3

12. (5 points) The function $f(x) = \sin(x) - \cos(x) + x$ has inflection points at what x-values on the interval $[0, 2\pi]$?

- A. $\frac{\pi}{4}$ and $\frac{3\pi}{4}$
- B. $\frac{\pi}{4}$ and $\frac{5\pi}{4}$
- C. $\frac{5\pi}{4}$ and $\frac{7\pi}{4}$
- D. $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, and $\frac{7\pi}{4}$
- E. No inflection points.

13. (7 pts) Find the general antiderivative of $f(x) = \frac{3\sqrt{x} + 1}{x}$.

Answer:

14. (12 pts) Evaluate $\lim_{x\to 0^+} (e^{2x} + 4x)^{1/x}$.

Answer:

15. (12 pts) Sketch a graph of a function f(x) with the following properties.

- f(0) = 0.
- $\bullet \ \lim_{x\to\infty} f(x) = 2$
- $\bullet \ \lim_{x \to -\infty} f(x) = 3$
- f'(x) < 0 for x < 2 and f'(x) > 0 for x > 2
- f''(x) < 0 for x < 0 and for x > 3 and f''(x) > 0 for 0 < x < 3
- f has an absolute minimum value of -2

16. (12 pts) Suppose $f''(x) = 4x + \cos(x)$, f'(0) = 2, and f(0) = 5. Find f(x).

Answer:

- 17. (12 pts) Pick ONE of the two questions to answer.
 - (A) Find the x and y coordinates of the point(s) on the graph of $y = 3\sqrt{x}$, closest to the point (5,0).
 - (B) You need to make a retangular enclosure with an area of $6000 \ m^2$ that is divided into 3 sections by walls parallel to one of its sides. The external walls cost \$3 per meter in length and the interior walls cost \$2 per meter in length. What are the dimensions that minimize the cost of the walls?

Answer	