Math 231: Test 2A
 Spring 2016
 Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1-13.
- Since you have test version A, please code the Section field on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you MUST SHOW WORK for full and partial credit unless otherwise specified.
- Sign the honor pledge below after completing the exam.

PID

UNC Email \qquad

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: \qquad

A bug is moving left and right. Let $s(t)$ represent the position of a bug in feet to the right of the center of the room, where the center of the room is at 0 feet, 2 feet right of the center would be $s(t)=2$, and 2 feet left of the center would be $s(t)=-2$. Let t be time in seconds.

Suppose $s^{\prime}(t)<0$ and $s^{\prime \prime}(t)>0$ for $0<t<6$. True False Questions 1-5 are related to the bug's motion while $0<t<6$.

1. $(2 \mathrm{pts})$ True or False: The bug must be left of the center of the room.
A. True No info is given about the position B. False sit)
2. $(2 \mathrm{pts})$ True or False: The bug must be moving left.
A. True
$s^{\prime}(t)<0$
3. (2 pts) True or False: The bug must be slowing down.
$\xrightarrow[\text { B. False }]{\text { A. True }}$
$S^{c}(t)$ and $s^{\prime \prime}(t)$
have opposite signs
4. (2 pts) True or False: The bug's velocity must be decreasing.

5. $(2 \mathrm{pts})$ True or False: The bug must have negative acceleration.

6. (2 pts) True or False: If f is a differentiable function on $(0,10)$ and $f^{\prime}(3)=0$, then f has a local maximum or a local minimum at $x=3$.
A. True
B. False
7. $(2 \mathrm{pts})$ True or False: $\frac{d}{d x} \log _{2}(5)=\frac{1}{\ln (2) \cdot 5}$.
A. True
B. False

Consider $f(x)=(x-3)^{3}$

$$
\log _{2}(5) \text { is a constant }
$$

8. (2 pts) The figure below shows the graph of $y=f(x)$ and the graph of the tangent line at $x=5$. Suppose we use the differential $d f$ to approximate the change in f as x changes from 5 to 6 .

True or False: $|d f|>|\Delta f|$.
$d f$ is change in height of tangent line
which is greater that
Δf, the change in height of the function
A. True
B. False
9. (2 pts) True or False: If $f(x)=a x+b$ for some constants a and b, then the linearization of f is equal to f.
A. True
B. False so tangent live is the same like as $f(x)$
$f(x)=a x+6$ means $f(x)$ is a line
10. (2 pts) True or False: A strictly increasing function cannot have a local maximum.
A. True
B. False
you can get higher right
11. (5 pts) $s(t)=5 t^{2}-10 t$ represents the depth of a submarine in meters at time t minutes for $0 \leq t \leq 3$ as it moves up and down in the water (no sideways motion). What is the total distance traveled by the submarine during the first three minutes?
A. 5 m
B. $10 \mathrm{~m} \quad S^{\prime}(t)=10 t-10=0 \Rightarrow t=1$
C. 15 m
D. 20 m
E. 25 m

t	$s(t)$
0	$0 \geqslant 5$
1	$-5>20$

12. (5 pts) f and g are differentiable functions, with the following values and derivatives.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	2	3	4	-3
2	-2	2	5	2
3	3	4	1	5
4	4	3	6	5
5	9	0	1	2

Let $h(x)=f(g(2 x+1))$. Find $h^{\prime}(1)$.
$\underset{\substack{\text { A. }-24 \\ \text { B. }-12}}{ } \quad h^{\prime}(x)=f^{\prime}(g(2 x+1)) g^{\prime}(2 x+1) \cdot 2$
C. 10
D. 30
E. 60

$$
\begin{aligned}
& =f^{\prime}(g(3)) g^{\prime}(3) \cdot 2 \\
& =f^{\prime}(4) g^{\prime}(3) \cdot 2 \\
& =6 \cdot 5 \cdot 2=60
\end{aligned}
$$

13. (10 pts) Find the absolute maximum and absolute minimum values of $f(x)=2 x^{3}+3 x^{2}-12 x$ on $[0,2]$, and the points at which these values are achieved.

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}+6 x-12 \\
& 6\left(x^{2}+x-2\right)=0 \\
& 6(x+2)(x-1)=0 \\
& x \Rightarrow-2 \text { or } x=1 \\
& \text { not in } \\
& \text { interval }
\end{aligned}
$$

x	$f(x)$
0	0
1	-7
2	4

consider all 3 points

Absolute MAXimum values):
Absolute MAXimum points): $(2,4)$
Absolute minimum value (s): -7

Absolute minimum points): \square $(1,-7)$
14. (10 pts) Find $\frac{d y}{d x}$ for $y=\sqrt{\arctan \left(5^{x}\right)}$. You do not need to simplify.

$$
\frac{d y}{d x}=\frac{1}{2}\left(\arctan \left(5^{x}\right)\right)^{-1 / 2} \cdot \frac{1}{1+\left(5^{x}\right)^{2}} \ln 5 \cdot 5^{x}
$$

15. (10 pts) Find the slope of the tangent line of the curve $x^{3}-4 x^{2} y+y^{2}=1$ at the

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}-4 x^{2} y+y^{2}\right)=\frac{d}{d x}(1) \\
& 3 x^{2}-4 x^{2} \frac{d y}{d x}-8 x y+2 y \frac{d y}{d x}=0 \begin{array}{l}
4 \text { pt deriv of } \\
\text { each of } 4 \text { terms: } \\
x^{3},-4 x^{2} y, y^{2}, 1 \\
2 \text { pts dy in in } \\
\text { armet places }
\end{array} \\
& -4 x^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}=8 x y-3 x^{2} \\
& \frac{d y}{d x}\left(2 y-4 x^{2}\right)=8 x y-3 x^{2} \\
& \frac{d y}{d x}=\frac{8 x y-3 x^{2}}{2 y-4 x^{2}}
\end{aligned}
$$

at $(x, y)=(0,1)$.

$$
\frac{d y}{d x}=\frac{-3}{-4}=\frac{3}{4}
$$

16. (10 pts) Evaluate $\frac{d y}{d x}$ at $x=2$ if $y=x^{g(x)}$ and $g(2)=3$ and $g^{\prime}(2)=-5$. You do not have to simplify your answer.

$$
\begin{aligned}
& y=x^{g(x)} \\
& \ln y=\ln x^{g(x)} \\
& \ln y=g(x) \ln x \quad \\
& \frac{1}{y} \frac{d y}{d x}=g(x) \cdot \frac{2}{x}+g^{\prime}(x) \ln x \\
& \frac{d y}{d x}=y\left(g(x) \cdot \frac{1}{x}+g^{\prime}(x) \ln x\right) \\
& \frac{d y}{d x}=x^{g(x)}\left(g(x) \cdot \frac{1}{x}+g^{\prime}(x) \ln x\right) v \\
& \left.\frac{d y}{d x}\right|_{x=2}=2^{3}\left(3 \cdot \frac{1}{2}-5 \cdot \ln 2\right) \\
& =12-40 \ln 2
\end{aligned}
$$ approximate $\ln (1.2)=\ln (2 \cdot 0.6)$

$$
\begin{aligned}
& L(x)=f^{\prime}(a)(x-a)+f(a) \\
& f^{\prime}(x)=\frac{1}{2 x} \cdot 2=\frac{1}{x} \\
& f^{\prime}(0.5)=\frac{1}{0.5}=2 \quad f(0.5)=\ln (1)=0 \\
& L(x)=2(x-0.5)+0
\end{aligned}
$$

use $x=0.6$ s

$$
\begin{aligned}
\ln (1.2)=f(0.6) \approx L(0.6)=2(0.6)-1 & =1.2-1 \\
& =0.2 .
\end{aligned}
$$

18. (10 pts) The figure shows a graph of $y=f(x)$. No work needs to be shown on this problem.

(a) Find the x-values) of all critical points (or write NONE).

$$
x=0, x=1, x=3
$$

(b) Find the x-values) of all local minimum points (or write NONE).

$$
x=3
$$

(c) Find the x-values) at which f attains its global minimum (or write NONE).
NONE

(d) Find the intervals) on which f is increasing. (write your answer in interval notation or write NONE)

$$
(-1,1) \cup(3,5)
$$

(e) Find the interval(s) on which the DERIVATIVE of f is increasing. (write your answer in interval notation or write NONE)

$$
(0,1)
$$

19. (10 pts) A 18-ft ladder leaning against a wall begins to slide. How fast is the angle between the ladder and the wall changing at the instant of time when the bottom of the ladder is 9 ft from the wall and sliding away from the wall at the rate of $4 \mathrm{ft} / \mathrm{sec}$?

$$
\begin{aligned}
& \sin \theta=\frac{x}{18} / J \\
& \cos \theta \frac{d \theta}{d t}=\frac{1}{18} \frac{d x}{d t} u v \\
& \frac{d \theta}{d t}=\frac{1}{18 \cos \theta} \cdot \frac{d x}{d t} \\
& \frac{d \theta}{d t}=\frac{1}{18 \frac{\sqrt{3}}{2}} \cdot 4 \\
& =\frac{4}{9 \sqrt{3}}=\frac{4 \sqrt{3}}{27} \frac{\mathrm{rad}}{5 \mathrm{sec}}
\end{aligned}
$$

