Math 231: Test 2A
Spring 2016
Instructor: Linda Green

e Calculators are NOT allowed.

e Please code true/false and multiple choice answers on a scantron. These are
questions 1 - 13.

e Since you have test version A, please code the Section field on the scantron
as 111111 (all 1’s).

e No partial credit for multiple choice / no work needs to be shown.

e For short answer questions, you MUST SHOW WORK for full and partial
credit unless otherwise specified.

e Sign the honor pledge below after completing the exam.

First and lastname ......... ‘A . e«ﬂ ........................................

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: . ... ... ..



A bug is moving left and right. Let s(t) represent the position of a bug in feet to the
right of the center of the room, where the center of the room is at 0 feet, 2 feet right
of the center would be s(t) = 2, and 2 feet left of the center would be s(t) = —2. Let
t be time in seconds.

Suppose s’(t) < 0 and s”’(t) > 0 for 0 < t < 6. True False Questions 1- 5 are related
to the bug’s motion while 0 <t < 6.

1. (2 pts)True or False: The bug must be left of the center of the room.
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2. (2 pts)True or False: The bug must be moving left.
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3. (2 pts)True or False: The bug must be slowing down.
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4. (2 pts)True or False: The bug’s velocity must be decreasing.

A. True

S"H) 7o so 'Y N anuteniy

5. (2 pts)True or False: The bug must have negative acceleration.
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6. (2 pts) True or False: If f is a differentiable function on (0,10) and f’(3) = 0,
then f has a local maximum or a local minimum at x = 3.
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7. (2 pts) True or False: %logzﬁ) = ln(21) = _ _
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8. (2 pts) The figure below shows the graph of y = f(x) and the graph of the
tangent line at x = 5. Suppose we use the differential df to approximate the
change in f as x changes from 5 to 6.
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9. (2 pts) True or False: If f(x) = ax + b for some constants a and b, then the
linearization of f is equal to f.
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10. (2 pts) True or False: A strictly increasing function cannot have a local maxi-
mum.
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11. (5 pts) s(t) = 5% — 10t represents the depth of a submarine in meters at time
t minutes for 0 < t < 3 as it moves up and down in the water (no sideways
motion). What is the total distance traveled by the submarine during the first
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12. (5 pts) f and g are differentiable functions, with the following values and
derivatives.
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Let h(x) = f(g(2x + 1)). Find /(1.
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13. (10 pts) Find the absolute maximum and absolute minimum values of
f(x) = 2x°+3x?—12x on [0, 2], and the points at which these values are achieved.

CI02 exFabxtres

2 wz)—-o
L (%™ ¥ s | o

X 3< 2D y

net in / v 9 L-‘

v

cosider all 3
fg\fdj-‘

Absolute MAXimum value(s):

Absolute MAXimum point(s): (' 2'1 “ )

Absolute minimum value(s):
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14. (10 pts) Find Z—y for y = y/arctan(5*). You do not need to simplify.
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15. (10 pts) Find the slope of the tangent line of the curve x° — 4x%y + y*> = 1 at the
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16. (10 pts) Evaluate d_ayc atx = 2if y = x8® and ¢(2) = 3 and ¢’(2) = -5. You do

not have to simplify your answer.
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17. (10 pts) Find the linearization of f(x) = In(2x) at the point (0.5,0). Use it to
approximate In(1.2) = In(2 - 0.6)
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18. (10 pts) The figure shows a graph of y = f(x). No work needs to be shown on
this problem.

f(x)
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(a) Find the x-value(s) of all critical points (or write NONE).
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(b) Find the x-value(s) of all local minimum points (or write NONE).
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(c) Find the x-value(s) at which f attains its global minimum (or write
NONE).
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(d) Find the interval(s) on which f is increasing. (write your answer in
interval notation or write NONE)
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(e) Find the interval(s) on which the DERIVATIVE of f is increasing. (write
your answer in interval notation or write NONE)
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19. (10 pts) A 18-ft ladder leaning against a wall begins to slide. How fast is the
angle between the ladder and the wall changing at the instant of time when
the bottom of the ladder is 9 ft from the wall and sliding away from the wall

at the rate of 4 ft/sec?

B @l
H H
EEN
.
Sn® = o S S
o Ax
—— Ly )—" —

Cos © It ° 13 d" J
o _ ' 4>
W eoe +E
3 |8 s Q

40 I

wosE

L I L !
- ~7 s
943 JS




