Math 231: Test 1A

Spring 2016

Instructor: Linda Green

- Calculators are NOT allowed.
- Please code true/false and multiple choice answers on a scantron. These are questions 1 13.
- Since you have test version A, please code the Section field on the scantron as 111111 (all 1's).
- No partial credit for multiple choice / no work needs to be shown.
- For short answer questions, you must show work for full and partial credit if specified.
- Sign the honor pledge below after completing the exam.

First and last name
PID
UNC Email
Honor Pledge: I have neither given nor received unauthorized help on this exam.
Signature:

- 1. (2 pts) True or False: If f and g are continuous at x = a with $g(a) \neq 0$, then $h(x) = \frac{f(x) + \sin(x)}{g(x)}$ is continuous at x = a.
 - A. True
 - B. False
- 2. (2 pts) True or False: For $f(x) = \frac{1}{x}$, since $f(-2) = -\frac{1}{2}$ and $f(2) = \frac{1}{2}$, there must be a number c between -2 and 2 such that f(c) = 0.
 - A. True
 - B. False
- 3. (2 pts) True or False: If f(x) is continuous at x = 2 then f(x) is differentiable at x = 2.
 - A. True
 - B. False
- 4. (2 pts) True or False: If f(c) exists and f is continuous, then $\lim_{x\to c} f(x)$ exists.
 - A. True
 - B. False
- 5. (2 pts) True or False: If $\lim_{x \to c} f(x) = 0$ and $\lim_{x \to c} g(x) = 0$ then $\lim_{x \to c} \frac{f(x)}{g(x)}$ is either 0, ∞ , $-\infty$, or DNE.
 - A. True
 - B. False
- 6. (5 pts) Find $\lim_{x \to 4} \frac{x+7}{|x-4|}$
 - A. 1
 - B. $\frac{7}{4}$
 - C. −∞
 - D. ∞
 - E. DNE

- 7. (5 pts) Find $\lim_{x\to 5} \frac{\sqrt{5} \sqrt{x}}{(x-5)}$
 - A. 0
 - B. $\frac{1}{2}$
 - C. $-\frac{\sqrt{5}}{10}$
 - D. $2\sqrt{5}$
 - E. DNE
- 8. (5 pts) Find $\lim_{x\to 0} \frac{x}{\tan(5x)}$
 - A. 0
 - B. $\frac{1}{5}$
 - C. 1
 - D. 5
 - E. DNE
- 9. (5 pts) Find $\lim_{t\to\infty} \frac{5}{t^2 e^t}$
 - A. 0
 - B. 5
 - C. −∞
 - D. ∞
 - E. DNE
- 10. (5 pts) Find $\lim_{x \to \infty} (\sin(x) + 5)$
 - A. 0
 - B. 5
 - C. 6
 - D. ∞
 - E. DNE

- 11. (5 pts) If f'(-4) = 3 and f(-4) = 10, find the equation of the tangent line to y = f(x) at x = -4.
 - A. y = 3x 4
 - B. $y = 3x + \frac{10}{3}$
 - C. y = 3x + 10
 - D. y = 3x + 22
 - E. There is not enough information to determine the equation of the tangent line.
- 12. (5 pts) The function $p(t) = t^3 + 2$ represents the depth of a submarine in meters at time t minutes, as the submarine descends directly down. Find the submarine's average velocity between t = 1 and t = 3.
 - A. 12 meters per minute
 - B. 13 meters per minute
 - C. 15 meters per minute
 - D. 27 meters per minute
 - E. 29 meters per minute
- 13. (5 pts) As in the last problem, the function $p(t) = t^3 + 2$ represents the depth of a submarine in meters at time t minutes, as the submarine descends directly down. Find the submarine's velocity at exactly t = 3.
 - A. 12 meters per minute
 - B. 13 meters per minute
 - C. 15 meters per minute
 - D. 27 meters per minute
 - E. 29 meters per minute

14. (8 pts) Each of the following limits represents the derivative of some function f(x) at some number a. State a formula for f and the value of a. You DO NOT need to find the limits or show work.

(a)
$$\lim_{x \to -1} \frac{e^x - \frac{1}{e}}{x + 1}$$

$$f(x) = a =$$

(b)
$$\lim_{h \to 0} \frac{(5+h)^2 - 25}{h}$$

$$f(x) = a =$$

15. (10 pts)
$$y = x^3 \cos(x)$$
. Find $\frac{d^2y}{dx^2}$ at $x = \pi$. Show work.

16. (6 pts) Find the vertical and horizontal asymptotes (if any) of $f(x) = \frac{6x - 12}{x^2 - 4}$.

Horizontal Asymptote(s):

Vertical Asymptote(s):

17. (6 pts) Is if possible to find a value for c that makes the function g(x) below continuous? If so, find it. If not, indicate why not. Show work to justify your answer.

$$g(x) = \begin{cases} 3, & \text{if } x \le 1\\ cx^2, & \text{if } 1 < x < 2\\ 10x - 5, & \text{if } 2 \le x \end{cases}$$

18. (10 pts) $y = \frac{xe^x}{3x^5 - \tan(x)}$. Find y'. Show work. DO NOT simplify.

19. (4 pts) If
$$\lim_{x\to 2} \frac{A(x+B)}{x^2-6x+8} = 5$$
, find A and B.

A =

B =

20. (6 pts) The graph of y = f(x) is drawn below. On the blank axes, sketch a graph of y = f'(x).

