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Abstract

An explicit construction of Vassiliev style link invarjants is developed; a new con-
struction of Vassiliev knot invariants is shown in the process. Inside the space of all
maps Ly from [];_,5' to R? is the diseriminant £, which is the set of maps that are
not embeddings. Following Vassiliev, we employ a spectral sequence to find certain
homology groups of the discriminant and, using e sort of infinite dimensional Alexander
Duality, obtain knot and link invariants which are elements of /1 0 £, —E) and are link
invariants of finite type. To calculate the value of the invariant on s knot or link we
need some initial data: the needed data is entered into a table called an actuality ta-
ble. Following Vassiliev, an inductive algorithm is developed that allows us to trace the
progress of a given cycle through the spectral sequence without having to calculate the
entire spectral sequence. We carefully investigate the the geometry of the discriminant
in the course of this development.

We give examples of how the invariants are derived and how they are evaluated on
links. The examples presented include examples of knot invariants, link invarients and
invariants of link homotopy; we evaluate one of the invariants of link homotopy for two
component links on a whole class of two component links. We also give the generalization
to links of Birman and Lin's result that establishes an important relationship between
invariants of finite type and a general form of the HOMFLY polynomial.
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Introduction

The main result of this paper is the generalization of Vassiliev invatiants to links. In
[V}, V.A. Vassiliev constructs invariants of knots using machinery {mostly) from algebraic
topology. Usually, knots are thought of as embedded copies of 51 inside R® or %, while
Vassiliev chose to regard knots as knotted real lines in three-space, and his invariants are
of knotted lines. Birman and Lin, in [BL], have since shown that these invarients extend to
invariants of knotted eircles. My approach to the construction of analogous link invariants
grows out of the work of Vassillev, rather than out of the more combinatorial approach of
Rirman, Lin, Bar-Natan, Stanford and others; see [BL], [BL1], [B], and [8].

Before giving an outline of the organization of the dissertation, we will state the main
results. Let £, be the space of all maps from [, 8 to R?, and let ¥ be the discriminant
of £, which is the subset of L, consisting of all maps that are not embeddings. Each
embedding in £, can be viewed as a link of n components. We will show that there is a

nested set of finite dimensional affine subspaces
MHer?crfc Ly
whose union is dense in £, and whose intersections with & contain only nice singularities.

If £, were an m dimensional affine space, and T were sufficiently nice, then the Alexander
Duality theorem would tell us that

B%(Ln — E) & Hn1(8),

where H* is reduced cohomology and Hy is closed homology. Unfortunately, £n 1s infinite
dimensional and ¥ is not that nice. Fortunately, T is finite dimensional and can be con-
structed so that T% M L is nice. Next, we inflate the space T4 % so that the inflated space
£ can be given a bounded filtration

el
determined by the complexity of singular behaviour. The homology of  is the same as that

of T4 N %, so the above filtration gives rise to & spectral sequence FE9(d) which converges
to H,(T¢nL).

Let's call an immersion L7 in ¢ ndce if it has no singularities and its only self intersec-
tions are § transverse double points, Let (L4, L, L1} be the triple consisting of two links
Ly and L.. and a nice imnmersion LY, and assume that Ly, L_ and L} vary In the location
of a single crossing in the manner pictured below:



Let (L-’_’;,Li’l_, L1} be the triple consisting of two nice immersions Lﬁﬂ and L7 with j
tranverse double points and a nice immersion L3+ with j 4 L tranverse double points, and
assume that these three immersions vary exactly as do L., L and Ll above.

Yet (V,T) be the pair consisting of a Z-valued invariant Y of n component links and a
7 valned invariant 7 of nice immersions of n circles, (V,Z) is called a link invariant of finite
type of order I'if it satisfies the following four axioms:

V1. V(unlink of n components) = 0,
V2, V(Ly) = V() = T{I)

T(IA) — T(LL) = e(L, L2, LEHI(IAHY), where (L2, 7 Ii) = +1,
V3, T(L™) =0 it m > I,

va 7(__S) =0,

and (V,T) has some additional data in the form of a table called an actuality table. The
actuality table gives the value of Z on a certain set of model immersions with § double
points, 1 < j < I, and this set depends on (V,Z). Since all of our invariants satisfy the four
axioms, they are in some sense détermined by their actuality tables. We can now state our
main results.

Theorem 3.11 Let n and d be fized positive integers. Let

v & B (d) C Han—1(Qr) € Han-1() ¥ Han-1(T*N ),
where N == n(2d-+1) and I < 381, Then there is o link invariant Vy and an invariant Z,
of nice immersions such that the pair (Vy,Iy) is ¢ link invariant of finite type of order I.

We should noté that V., is the Alexander dual of y and is an element of HO(D4 - (T9N5)).
We also note that 3N is the dimension of I'?. These invariants stabilize as d — oo.

Theorem 3.22 Let n, d, I' and v be as above. Let d > d. Then for each r = 1,2,...,,
we have _

Eptl(d) = BV (d).
Moreover, if § € ExDT(d) corresponds via this isomorphism to y € EZM, then for each link
L and each mice immersion I in T'% ¢ T¢ we have

Vy(L) = Vo(E)
and .
T5(1) = (D).

We also give the generalization to links of Birman-Lin’s main theorem from [BL]. Our
generalization establishes a relationship between link invariants of finite type and a gener-

alized form of the HOMFLY polypomial.
Theorem 4.41 Let I be ann component link and let Hy,1(L) be its m™ generalized HOM-

FLY polynomial. Let Wi, (L) be obtained by replacing t by Y. Suppose that
Winy(L) = Z:(}wm,;(L)yi
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is the power series ezpansion that results from replacing e¥ by its Taylor series about g = 0.
Let ¢; be the it coefficient of the power series expansion of '

(Ey(m.;.u/z — gy(m1)/2 ) n-l

e¥/2 o g u/2

where the sertes is obtained by replacing ¢¥ by its Taylor series about y = 0. Then
Um,i =° Wmi — G

is a link tnwariant of finite type of order i.

"The machinery needed to develop link invariants is considerably stickier than that which
is needed to develop invariants of knotted circles, which from my point of view simply
constitute the special case where the number of components is equal to one. Chapter one
begins with the preliminary definitions and topological constructions needed to put together
the spectral sequence from which the invariants will eome. In §1.1-§1.4, we construct the
sequence {I'} of finite dimensional subspaces of L, mentioned above. §1.5 ends chapier
one and is devoted to inflating T N'E to obtain  and then constructing the filtration of &
that gives the spectral sequence.

Chapter two is an explicit construction of the machinery necessary to obtain an invariant
of knotted circles and proves our main result for the case n = 1. In & sense, Vassiliev pushed
certain boundary terms (boundary in the homological sense) out to infinity. In §2.1 and §2.2
we give & CW decomposition of £; — €% that includes cells that live out at infinity (and
are therefore not seen) in Vassiliev’s construction. An investigation of the initial differential
do on the generating cells of the CW decomposition follows in £2.3. In §2.4, we give &
procedure for caleulating a eertain coefficient, called a relative orientation coefficient, that
determines how the cells in our decomposition fit together. There are some cells in £;—
that lie in the common boundary of certain pairs of cells in our decomposition; these cells
are pot present in Vassiliev’s construction and the relative orientation coefficients concern
these cells. "These coefficients are crucial to our link invariants later. In §2.3, we explain
how the data in the actuality table is arranged and how it is used to realize a knot invariant.
As stated above, the invariant is realized as s cycle v in the homology of £ and the initial
date needed for the actuality table turns out to be the coefficients with which cells, of our
decomposition of ; — ;- for § < 4, enter into chains which will insure the survival of
» through the spectral sequence. In §2.6, we state our main results in the case n = 1.
Following Vassiliev, we give an algorithm by which the data of the nontrivial survival of a
single given cycle «y through the spectral sequence can be recorded in the actuality table
without having to work out the entire spectral sequence. In order to explain the algorithm
we must explore the geometry of € and we will see that there are geometric reasons why
the invariants satisfy the four axioms, and why the information contained in the actuality
table gives an invariant. This exposition will prove most of our first main result, with the
proofs of some facts postponed until chapter three. Qur second main result is stated but
not proved until chapter three. This exposition is destgned to make the generalization in
section three more natural.

Chapter three develops link invariants using the foundations laid in chapter two. In §3.1,
§3.2 and §3.3 we construct the CW decompostion of ; — 2;..) that generalizes the one in
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chapter two. This decomposition is considerably more complicated than the analog for the
case of knots. In the boundary of 3N — 1 dimensional cells of ©; — ;.. there exist cells
of a certain type called fived point cells. These cells do not occur in Vassliev’s construction
in the case of knots and, in our construction in chapter two, they cancel out so nicely that
they can be ignored. For each 3N — 1 dimensional generating cell in the cellular chain group
Can-1(53 — Qj_1), let do(e) be expressed as

do(e) = Bi(e) + Ba(e)

where dp is the initial differential in the spectral sequence, B (e) is the contribution of all
fixed point cells to the boundary of e and Bz(e) is the rest of the differential of e, In the case
n=1,ify € Can-1(0; ~Q;_1) is a chain such that By(y) = 0, then it turns out that this is
sufficient to insure that + is a cycle. This is to say that Ba(¥) = 0 = Bi(y) = 0. This 4s not
the case for n = 2. Tn the beginning of §3.4, we give a simple example, for n == 2, of a chain
4 & Canmt (0 = Q1) such that Ba(y) = 0 but Bi(y) # 0. We show explicitly that this
chain cannot possibly give a link invariant. The result is that when n = 2, the cancellation
of these additional boundary cells, the ones not present in Vassiliev's construction, iz a
necessary condition for obtaining a link inveriant. In §3.4, we state and then prove our
main results. First, we will give the analog for the inductive algorithm from chapter two.
Secondly, given a cycle in E=#7, we will show that our method for assigning numbers to
7 component links and nice immersions does indeed yleld an invariant. The second main
result, that the Invariants stabilize as d — o0, is easy to show after the machinery is set up,
and §3.4 concludes with this result.

Chapter four begins with an exposition of some of the combinatorial properties of the
invariants. In §4.2, we generalize a lemma of Birman and Lin and then exploit this result to
show that our invariants include two classes of invariants of link homotopy, which are link
invariants that do not detect the knotting of one component of a link with itself. We also
prove that the combinatorial properties of invariants of n component links, for n 2 2, insure
certain kinds of symmetry within the collection of cells that enter with nonzero coefficients
into the corresponding cycle back in E7#7. In §4.3, we give several examples in depth. First,
we give an example of how the actuality tables are filled out and then used. We have spared
no detail in this example and have presented the process using a diagramatic approach.
Next, we present several examples of actuality tables of link homotopy, and we give an
example iHustrating the fact that sometimes there are choices to be made when filling in
the table. We then evaluate one of these invariants on a whole class of two component
links. We conelude §4.3 with an example of an invariant of two compornent links that is not
an invariant of link homotopy. This invariant distinguishes the Whitehead link from the
unlink, and we show that ealeulation. In §4.4, we prove the generalization to Birman and
Lin’s result mentioned above.

Chapter five contains the proofs of lemma 1.6, theorem 3.4, and theorem 3.6. These
proofs are not in the sections in which the results are stated because the statements are
technieal results, and their proofs do not contribute to the exposition.

As much as possible this paper sticks to the notation developed by Vassiliev in (V1]
and later by Birman and Lin in [BL]. When the two sets of notation did not agree, I often
went with the Birman-Lin notation as it seemed more natural. I have also proved (the
generalization of) many facts that were simply stated in Vassiliev’s paper. My hope is that
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1 Tools and Preliminaries

1.1 The Space of Links

DEFINITION: A knot 1s an oriented one dimensional ¢! submanifold of 5% or R? that is
diffeomnorphic to the eircle §*. A link is an oriented one dimensional ¢! submanifold of §*
or R? that i¢ diffeomorphic to a disjoint union of n copies of §* for some n. Each of the n
copies of §* making up the disjoint union is called a component. We call a link colored if
its components are labelled in a one to one manner by the integers 1,2,...,n.

We can view colored links as the images of embeddings f : [, S! < §° or R®, where
the component labelled by m € {1,2,...,n} is the image of the m* copy of 8% in [ 57,
We will agsume link means colored link.

DEFINITION: Two links are called equivalent if there ls an orientation preserving isotopy
of S% or R? taking one link to the other that preserves coloring.

Now let
L= {f:1T2;8" — R} f is an immersion}

and let
Tn = {f € £ ] f is not an embedding}.

We will call £, the disceriminant.

Let n be fixed. We will omit » unless necessary. Note that connected components of
L\X are in one to one correspondence with the equivalence classes of links.

1.2 Approximations

Following Vassiliev, we want to construct our link invariants initially for finite dimensional
subspaces of the space of all maps ][] 5! — 52, We will choose a family of finite dimensional
affine subspaces of £ whose union is a dense countably infinite dimensional subspace of £
and will construct our invariants for maps in these spaces.

Let
ré = {p= HPi | I_.[f"1 =+ R31 Pi = (Pi1, Pizs Pis) }-
Each pi; has the form:

d

Pis(t) = Gi0/2 + Y (Gi,j,26-~1 COS Kt - @y,5,25 sn ki)
Rzl

where ¢ € {0, 2r].

I'? is & vector subspace of dimnension 3n(2d-+1) with natural coordinates (), 1 £ 1 S 7,
1<i<3,0<k<2d



Note that T is pot transverse to the discriminant, For example any p €I such that
Qijk = Qgjk = +** = Gnjk, V], k, has an uncountable number of self intersections. We would
like T to0 be transverse to ©. To do this we embed I'? into T2 by sending

(a1, 8111,0112; - - - 01,1,2d=1, 1,1, 2ds
2120, 0121, 122, - -+, @1,2,2ds
130, 2131, A132, - - -y (1,3,2d>
4210, 4211, 32125 10 1
n,3.2d—1; On,3,2d )

in I'? to the point in I'* with coordinates:

(@110, 0111, G132: @113, G145 - - - B1,1,2d—1, 811,20, 0y o+, 0y
8190, @121, G122, 8122) G124 - - - 01,2,2d~1, 31,224, 0y - <, Oy
8130, @131, 3132, 2133, G134, - - + 61,3 2d~1: 81,324, & . .+, 0,
210, @2115 3312 + + + 1 B, 3,2d1, @1, 3,241 0 -+, 0 )

Lemma 1.1 T9N X is q stratified semialgebraic set.

Proof: This follows from the Tarski-Seidenberg theorem. O

Corollary 1.2 TN I can be triangulated.

It is & consequence of the (weak) transversality theorem [AVG] that in the set of em-
beddings I'? «» I, the ones that are transverse to I'°* M I are everywhere dense. By
perturbing the image of T4 we can sssume that it is transverse to T2?N I, From now on we
will assume that T refers to an embedded copy of T'® C I'* chosen transverse to T4 L.

The functions p € UdEz,de are dense in £ because the Fourier series of any function
f : 118! — R? converges to f, so that any link is equivalent to one in T for d large enough.

1.3 Configurations

For a given p & YU 5, we would like o have a way of encoding how singular p is. Now we
will deseribe certain types of configurations of points on {15 that do this.

DEFINITION: An A-configuration on [ 5 is & finite collection of » points partitioned into
s subsets which we will call groupings. Each grouping is required to have cardinality = 2
and has the property that the points of the grouping are all on the same copy of §* € [15 1,
We define |A| = r and §A = s.

DEFINITION: Suppose n 2 2. A C-configuration on 1S is a collection of |C] points
partitioned into §C groupings. Each grouping must have cardinality = 2, and in every
grouping there must be two points that lie on different copies of 51in 1151

DEFINITION: A B-configuration on [] 87 is a set of b points on [] 5™
DEFINITION: An (4, B, C)-configuration is a triple consisting of an A-configuration, & B-

configuration and a C-configuration. The A and C configurations do not intersect, but the
B-configuration may overlap with either or both of the 4 or C configurations.
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Example with Figure 1.3 These diagrams will have more significance later. We will
fully explain them for the casen =1 in §2.2 and for the general case in §3.3. In this, and all
other pictures of circles to come, we will assume that the cirele is oriented counterclockwise.
Let n—1 and assume that S* is parameterized by [0, 2x} in the usual way. Let

{0,7/4,7/2,3x/4,7} and {57/4,37/2, Tr/4}
be the two groupings of an A-configuration on S*. Let
{0,7/3,2r/3}

be a B-configuration on S*.
|A| = 8, 4 =2 and b= 3:

Example with Figure 1.4 Let n == 2 and again assume that each of the two copies of 51
are parameterized by [0,2n]. We will subscript 6 € [0,2n] to indicate inelusion tn the first
or second copy of 81 ¢ SIS Let

{01, (7)1}, {(7/6)2, (x)2} and {(m/2)z, (37/2)2}
be the groupings of the A-configuration. Let
{(m/2)1, (3n/2)1, (8n/4)2}
be the grouping of the C-configuration, and let
{(x/3)1, (m/2)a, (27/3)2}

be the B-configuration.
|Al =6, jA=3,]C| =38, §C =1 and b= 3:

(¥,

Oy

From now on let ug assume that each copy of 5% in [] 5 is parameterized by {0, 2]

DEFINITION: Let J be an (A, B, C)-configuration, If n = 1, then we call min{z € §'nJ}
the first point of J, where the miniraum is taken relative to the standard ordering of [0, 27).
If n > 2, then min{z € J N (SY);} is called the first poin of J on (51);.



Example 1.5 Using the Ezample with Pigure 1.4, (0)1 is the first point of the (A, B,C)-
configuration on (8%)1 and (r/6)s is the first point of the (A, B, C)-configuration on (S')a.

DEFINITION: We say that two (4, B,C)-configurations J and J' are equivalent if there
is an orientation preserving diffeomorphism of [Ji; 51 that sends (S'): to itself for each
and takes J to J' preserving first points. We write J' ~ J if J and J' are equivalent.

DEFINITION: Suppose p € I'? and suppose J is an (4, B, C')-configuration. Let
{g1,92,- - g4}

be the groupings of points in the A-configuration of J,
{h1,ha, ... et

be the groupings of points of the C-configuration of J and
{81, B2 -- - Bv}

be the points of the B-configuration of J. If for every and y in g we have p(z) = p(¥),
1 <4< §A and for every u and v in h; we have p(u) =p(v), 1 £J = BC, and for 1 £k <b
we have p'(f) = 0 then we say that p respects J.

This is to say that a map p respects a configuration J if for each grouping of points in
the A or C configurations of J, the immersion p maps every point in that grouping to the
same point, and p has vanishing derivative at each point in the B-configuration of J.

Let J be an (A, B, C)-configuration. We define
MI4 N ={pec I | p respects J}
and we define the complexity of J to be the number
I={Al+|C]- A+ 3C + b

If p € M(I'%,J) , and the image of p is a curve that posseses no self intersections or
gingularities beyond those mandated by J, then we say that the curve realizes J. Tbis
terminology is due to Bar-Natan in [B] and will be very useful.

1.4 A Lemma and More Definitions

Note that p Is in M(9,J) if and only if p is a solution of 31 equations that are linear in
the coordinates ag of I'?, These equations come in three forms:

1. For some 4, 1 < i< n and p = [Ip, we have pi(s) — pi(t) = 0, where s and t are in
the same grouping of points in the A-configuration of J.

9. For some 4 and 7, 1 < 4,7 < n, pi(8) ~ p;(t) = 0, where s and ¢ are in the same
grouping of points in the C-configuration of J.

3. For some i, 1 <1 < n, pj(t) =0, where ¢ is 2 point of the B-configuration of J.



Note that our choice of T insures that I'* does not contain the zero map in I'*, as it is
too singular for our purposes. Each T'¥ is an affine 3V dimensional plane in %4 that misses
zero. It follows that p is in M (D9, J) if and only if p Is & solution to the matrix equation
& (%) = 0, where N = n(2d+ 1), &7 € Homg (R™ 1, R¥) is determined by J, while I'd s
determined J and I'? is identified with R3V.

The following Jemma establishes the relationship between the complexity of a given
(A, B, C)-configuration J and the dimension of M (14, J) for some J' ~ J.

Lemma 1.6 For any (A, B, C)-configuration J we have that:
A) For almost every J' ~ J, the set M (¢, J) has codimension 31 inside T¢ and almost all
M(T%, J'Y are empty when I > N.
B) IfI £ N then
{J'1J ~J and M(T%J') has codimension 3 —t in %1 2z 1}

is a subset in {J'|J' ~ J} of codimension = t(3N =3I +t+1). IfI < (3N + 1}/5 then,
for each t = 1, the sei

{(J'] J'~J and M(I'%, J') has codimension 31 — t}

18 empty.

C) If I > N then, in {J'|J' ~ J} , the set of J' such that dimp M(T%,J) = 8 0 is of
codimension (s +1)(3] — 3N +s). If I 2 3N —1 then {J'| J' ~ J} is empty.

Proof: The proof uses some basic linear algebra, as well as the Product of Coranks theorem
[AVG], and can be found in Chapter five.

Part A) of the lemma says that for a generic J' ~J , the space M (T'4,.J) has the
codimension one would expect, i.e. 3I. Part B) says that, for I < (3N +1)/5, M (4, 1)
always has codimension 37, and part C) says that if I > 3N — 1 then M(I'%,J) is zero
dimensional.

For our purposes some configurations are special, so we will introduce some more ter-
minology, following Birman-Lin and Vassiliev.

DEFINITION: An (4, B, C')-configuration J is called inadmissible if it contains a grouping
of cardinality two in the A-configuration of J, and these two points bound a segment on
some (5%); C 11" that contains no other points of J. Otherwise J is called admissible.

DEFINITION: An (A, B, C)-configuration J is called noncomplicated if J has any of the
following formas:

« The groupings of the A and ¢ configurations all have cardinality two and the B-
configuration is empty. A configuration of this type, of complexity I, is called an
{I]-configuration.

10



« One grouping of the A-configuration has cardinality three, all of the other groupings
of the A-configuration and all of the groupings of the C -configuration have cardinality
two, and the B-configuration is empty. This type of configuration is called an (I)4-
configuration.

» One grouping of the C-configuration hes cardinality three, all of the other groupings
of the C-configuration and all of the groupings of the A-configuration have cardinality
two, and the B-configuration is empty. This kind of configuration is called an (Do~
configuration. :

e All of the groupings of the A and C configurations have cardinality two. The B-
configuration consists of a single point that is distinct from all of the other points in
the configuration. This type of configuration is called an {I — 1]*-configuration.

A configuration is called complicated otherwise.

Example with Figure 1.7 Let n = 2. Pictured are two sets of two circles, each repre-
senting a copy of 81 in S 1 5. The cirele to the left is the first civele. We will describe a
diagram that encodes the given (4, B, C)-configuration. The configurations are pictured by
denoting points of the A and C' configurations by little dots on the circles and by denoting
points on the B-configuration by little stars. Groupings of points are connected by chains of
arcs of chords. These chords have added significance loter. The first point on each circle is
denoted by a 1 next to the poinl.

|A] =4, 34A=2,|C|=2,§C=1andb=1:

i

14l =0, A =0, |C| =6, [C =3 and b= 0:

Each of the examples above are of noncomplicated configurations. The diagrams actually
deseribe the whole equivalence cluss of configurations containing the given one.

1.5 Generating Collections

Fix the integer d. Later on we will be trying to find certain homology groups of the space
I'¥ M %. Following Vassiliev, we will first construct a topological space whose homology
agrees with that of T9 N . It will be easier to calculate the homology of the new space.
First we need Vassiliev’s notion of a generating collection.

DEFINITION: Let W C 1] 8* be a finite set. A generating collection T' of W is a family of
pairwise distinet unordered pairs (£1,51), (2, 82), ..+, (1, 1) where £;, 5, € W and £; # s, for
1 < i <! and where any map p: [[S? -+ R? has the following two properties:

11



1. p maps each point in W to the same point,

2. for every ¢t and s in W, there is & finite nonrepeating sequence ¢ = to, 01,82, % = 8
of elements of W such that {to,t1), (1,22}, -« s (-1, t,) are pairs of T

DEFINITION: The triple (T, V, R) is & generating collection for an (4, B, C)-configuration
7 if T is the union of generating collections for each of the groupings of the A-configuration
of J, R is the union of generating collections for each of the groupings of the C-configuration
of J and V is the set of pairs

{(Br, Br), (Bas B2)s « - -+ (Brs Bo)}
where {81, 82,---,Ps} are the points of the B-configuration of J.

Thete are, in general, several different generating collections for a given (A, B,C)-
configuration, and there is a unique maximal generating collection for each (A, B,C)-
configuration.

Example with Figure 1.8 The type of diagram that we used to carry the information of
an (4, B, C)-configuration can also carry the additional date of o generating collection of the
(A, B, C)-configuration. The arcs, that connect pairs of points, can themselves be viewed as
unordered pairs. A star, placed at the location of & singular point B of the B-configuration,
can alse denote the pair (8,8) corresponding to that point in a generating collection.

A mazimal generating collection:

|

Three submaximal generating collections:

Now let’s create the space whose homology agrees with that of <Ny, To do this we will
infinte the maps of T*N % in such & way that the subspaces M (14, J) are inflated in inverse
proportion to the complexity of J. The result, we shall see, is to create a space which has a
nice CW decomposition in which the generating cells will correspond to equivalence classes
of (A, B, C)-configurations. The reason to inflate is to insure that the cells corresponding
to [j}-configurations, for 1 < j £ 7, all have the same dimension; this leads us to a filtration
of the CW decomposition by complexity, and finally to a spectral sequence. We need the
following lemmna.

 Let¢: JIS'x ISt — 115 x 115 be the involution taking (z,7) to (y,z). Let
& = (18" x 11 8%/t
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Lenmuma 1.9 For any integer k, there is an integer M and an embedding A+ @ — RM with
the property that no set of k distinct points of ® are mapped by A to a (k - 2) dimensional
affine plane in BM.

Proof: This is an application of the lemma found in the proof of theorem 1.5 in {V2]. O
Yor M dependent on k = 3N(3N — 1) where NV = n(2d + 1), fix such an embedding

. Fix an (4, B, C')-configuration J and les (T,V, K) be a generating collection for J. The
collection (T, V, R) consists of the following sets of unordered pairs of points:

{(ts,81), (t2,52), -+, (B1y 80)}
{(7'1; Ql), (72? QQ), T (Tm, gm)}
{()61: 181):' ()@2) ﬁﬂ)s veey (ﬁb;ﬁb)}
from the 4, ¢ and B configurations of J. Suppose that ay, ag, ..., 044 80d €1, 62,...,GC

are the cardinalities of the groupings of the A and C' configurations, respectively. From the
inequalities [ £ Y ai(a;i ~ 1) and m 5 T (e — 1) we obtain:

L+m+b € Yafa—~1+y ela—1)+0d

< fman(a)]) (Y0 251+ lma(en)] (251720 40,

Now, if I = |4] + |C] ~ §A — §C + b is the complexity of J, then I -+ 1 = max{a;) and
I 41 = max;(e;). From the inequalities above we get:

rmtb € I+ T+ 2 e
£,J
_ Il BNEN-1)
2 2

as long as T < 3N, The result is that the points
At1,81), -y At 1), AT Q)50 v vy M, @)y AL Br)s - s MBos B)

are in general position, so that their convex hull is an ! +m+ b1 dimensional simplex.

Let p be in M(T'%, J). To the pair (p, (T} V, R)) we assign the subset of I% x RM consisting
of p in the first coordinate and the interior of the above obtained I +m - b — 1 dimensional
simplex in the second coordinate. We will call this simplex the standard simplex associated

to (T, V, R).

Lemma 1.10 If (p1, (T, Vi, R1)) # (p2. (T2, Va2, Ra)} then the ecorresponding standard sim-
plices have no common interior poinis.

Proof: I p1 # pa, then (11, W, Ri) and (T2, Va, Rp) He in different copies of RM, If
(T}, Vi, Ry} # ({3, Va, R) are generating famnilies of the same configuration then their stan-
dard simplices are either both faces (not necessarily of codimension one!) of the standard
simplex of the unique maximal generating collection, or one is a face of the other. In either
case they share no interlor points. Finelly, suppose (T3, V1, Ry) and (Ta, Vz, Ra) are generat-
ing collections for configurations J and J, respectively, and p € M4 M T4, J). The
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total number of pbints spanning the two standard simplices is less than 2(%’@?&1)-)_: k. It
follows that these k points are in general position so that the interiors of the two standard

simplices cannot overlap. O

If J is an (A, B, ¢')-configuration, let cal§; refer to the standard simplex of the maximal
generating collection of J. Let 8y be the union of the interiors of the standard stmplices of
all of the generating families of J. Note that &7 C Sy and also that 8, does not contain
the interior of every face of §7. Define

Q= JMT4 T}y xS

where the union is taken over nll configurations J of complexity less than or equal to 3N,
Let H, refer to closed homology, which is the homology of the one point compactification
of the space modulo the compactifying point.

Theorem 1.11 IfF: 9 - nATE is given by (p, ) =+ p then F induces an isomorphism
Fo: Hi(Q) — H(ENTY).

Proof: This is proved for the case n = 1 as lemma 1 in section 3.3 of Chapter three in [vi]
and the same proof works in this more general setting. A different wording of the same

type of proof can also be found as the proof of proposition 3.4 in [V3]. The idea is that we
are inflating T in such a way that the inflated space Q can retract back to X. O

Because T4 = B3V, the one point compactification of % is homeomorphic to 3N, Using
Alexander duality, we obtain the result that

Hypr—g (BOL) 2 HI(TE -2
where J* refers to reduced cohomology.

_Any link I ean be approximated by a link Lg in It for d large enough. A cocycle of
HO(I'\X) evaluated on the component of Ly in I4NY gives an invariant of that component.

Since this invariant stabilizes as d — oo, it gives an invariant of L.

Alexander duality says that to find H%(I'¢ — I), we can find Han1{T* N E) and so by
the theorem above finding Hay_1(2) becomes our goal.

To obtain a filtration bjr complexity, let
Qs = {(p,z) € | p € M(T%J) and the complexity of J is < I}.

Then Qi € §lz € - Qan = £ 1s an increasing bounded filtration. This filtration determines
an homology spectral sequence 7 ,(d) converging to Hu(S2).

Following Vassiliev, transform the homology spectral sequence Ej.(d) to a spectral
sequence FP9(d) by letting p = —s and ¢ = 3N — 1 ~¢. The spectral sequence FP¥(d)
operates like a comohomology spectral sequence with its differentials. This is to say that
do will be a set of arrows potnting upwards, di a set of arrows pointing left to right and so
forth. We call EP?(d) the principal spectral sequence, and it is a second quadrant spectral
sequence. We meke this change so that the groups that we are interested in, which are the
groups Ey77(d), lie on the upper negative diagonal, Thus to find Hay-1(I* NX) we need
to find the groups B (d).
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2 A New Construction for the Case of Knots

2.1 J-Blocks and the First Reductions

Vassiliev constructed his knot invariants for noncompact knots, which are knotted embedded
real tines in R? with fixed asyrptotic directions. There iz a one to one correspondence
between embeddings of S in R3, §1 in §%, and R in R? that have fixed asymptotic directions;
thue Vassiliev's construction yields a knot invariant, Vassiliev’s construction depends on
this representation in several ways. In particular, the configuration space of ¢ points on
2 line is homeomorphic to (0,1)%, and so the result of theorem 2.5, that a ceriain bundle
is trivial, comes for free. Additionslly, and perhaps more importantly, Vassiliev’s space
o7 — 071, corresponding to our space {2y ~ £r-1, has a much simpler CW decomposition
than ours does. Certain cells, which we will call fized point cells, are pushed out to infinity in
some sense. While this simpler decomposition is easier to work with, it has the disadvantage
of not being generalizable to links and does not carry some of the useful information that
the more complex one gains from how fixed point cells glue the space together. In order to
generalize Vassillev's work to links, we will have to create machinery to treat the case of
knotted circles rather than knotted lines. For the remainder of this chapter we will restrict
our attention to the case of knotg, so the number 7 of components is fixed at 1. Whenn = 1,
any configuration J is only an (A4, B)-configuration, since there is no C-configuration in J.

Recall that the equivalence class of an (A, B)-configuration J determines a diagram (see
examples 1.7 and 1.8) and that the first point of J is marked by a 1 on the diagram. In
general, here are other eguivalence classes of configurations that determine a diagram that
is pictorially the same as the one that the class of J determines, except that its first point
lies at some other point.

Example with Figure 2.1 Pictured are two chord diagrams that are identical, except for
the locations of first points. We will explain the significance of chord diagrams in §2.2.

@ @
DEFINITION: Let J be an (A, B)-configuration. We say that J7 is related to J {the
superscript » is for related) if the equivalence class of J* determines & diagram that is
identical to the diagram associated with {J'{J’ ~ J} except that it varies in the location
of its first point. We denote this by J « J7 We call the set {J"]J" < J} the family of J.
Let
By =M@, J") xS

where the union is taken over all J7 related to J. The union By is.called a J -block.
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Lemma 2.2 If Ji and Jy are nonvelated configurations of complexity I, then By NBy, =@

Proof: Lemmae 1.4 implies that |
MDY, JT) o Sap N M(T?, J5) % Sz =0

for every J] related to Jy and Jj related t0 Jo. O

To begin computing the spectral sequence, we must first compute Hay—; {87 — Qr-1).
Let Z; = UBy, where the union is taken over all complicated configurations of complexity
I

Lemma 2.3 Z; is closed in 5 —Qr_1.
Proof: Suppose that Zy — %7 # 0 and ¢ € Zy - Z;. Since ¢ is not in Zr, we know that
q & B for some noncomplicated J and g = (p, ) for some p € M (14,J) and z € 8.

The point % lies in the interior of a standard simplex Sy G Sy for some generating
collection ¥ of J. By lemma 1.10, the interior of Sy doesn’t intersect the interiors of any
other standard simplices. Since ¢ € Zr, it follows that Sy must be a face of some standard
simplex & corresponding to & complicated configuration J of complexity I.

Let {(si,£:)} be the collection of pairs in W and, for each i, let @y = A(s;,1;) where A is
as in lemma 1.9. The ¢implex Sy is spanned by {;} and this collection of points must be
a stbeollection of the set {y;} of points spanning &.

I follows that either {z} = {3} or {m:} < {w}. In the first case J = J by lemma
2.2 and so 7 is noncomplicated, which is & contradiction. In the second case J must have
complexity strictly greater than [, again a contradiction. I'he result is that Zr is closed. O

Theorem 2.4 For each I, Hy(Z1) = 0 when k = 3N — 2.

Proof: This is proved a5 theorem 3.1.2 in [V]. The more general result is theorem 3.4, which
we will prove in Chapter five, O

Corollary 2.5 The map ® : He(Qy ~ Q1) = Hi(Qy = (@1 U Z1)), induced by the
projection map Cp(§tr — Qr-1) — Cr(§r — (71U Z1)), s an isomorphism for k> 3N —1
and ingective for k = 3N — 2.

Proof: We have an isomorphism
Cie(Qp — (11U 21)) = CrlQr =~ Qp1}/Cil Z1)
which gives the short exact sequence of complexes:
0 — Cx(Z1) — Ci(S2r — Dr_s) — Cr(§ — (1 U Z1)) — 0.

The result follows from the induced long exact sequence of the corresponding homology
groups and theorem 2.4, 0

For the remainder of this Chapter, let 4 be a fixed large positive integer. Suppose
I < 3t gpnd J has complexity 1. By lemma 1.4.B, M{'Y,J) has codimension exactly
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oqual to 37 inside I'Y. Because Sy & §yr and M (I'4, J) = M(T?, J7) for every J7 related to
J, B can be viewed as the total space of a locally trivial fibration over {J" | J" «J 1 with
fiber M (T2, J) x 8;. Let p(J) be the number of geometrically distinct points in J. We will
see in §2.2 that the configuration space {J7 | J” «» J} is homeomorphic to §* x (0, 1)7-1,
In order to calculate homology groups of §1y — -1, we need to know how twisted this
fibration is. It turns out that it is not twisted at all.

Theorem 2.6 By is ¢ trivigl fibration; a3 @ msult, By i3 homeomorphic to
{J7]J7 e J} % M4, J) % 81

Proof: The proof uses some basic linear algebra and shows explicitly that each twisting
map is the identity map. The more general vesult is given as theorem 3.6 and is proved in
Chapter five. O

2.2 Chord diagrams and the CW Decomposition of Q7 — Q7

Let J be an (A, B)-configuration of complexity J and assume that d is fixed large enough
that I < -wgﬂ, where N = n(2d + 1). We will design and explain a type of diagram that
we have already seen in the examples, These diagrams encode the topological structure of
B;. The diagram corresponds to the triple consisting of the family of configurations related
to J, the interior of a face Sy of Sy arising from a generating family ¥ = (T, R) of J and
the space M(T?,J).

Start with a circle pictured on the plane and with counterclockwise orientation. On the
circle are p(J) points with the first point of J marked by a 1. When two points on the circle
are contained in the same grouping of the A-configuration of J and the pair consisting of
those points appears in ¥, we join the two points by a single chord. When & point on the
eircle belongs to the B-configuration we distinguish it with a %

We will see that each of these diagrams corresponds to a cell in a certain CW decom-
position of €2y — 1. The cell corresponding to one of these diagrams has dimension:

o(J) + (3N — 3I) + (the number of chords) + &~ 1

where p(J) is the dimension of the configuration space {J'|J' ~ J}, while 3N — 3] is the
dimension of M(I'4,J) and (the number of chords)+b — 1 is the dimension of the simplex
corresponding to & generating family ¥ of J.

Example with Figure 2.7 The four types of diagrams which can occur for noncompli-
cated configurations are shoun in the following four figures.
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The first is for o [2]*-configuration; the associated cell has dimension 3N — 2:

&)

The following diagram is for a [4]-configuration; the associated cell has dimension 3N — 1:

&

The next is for a {(4)-configuration; the cell has dimension 3N — 1;

@

The last is for a (4)"-configuration; the cell has dimension 3N — 2:

el

We will now deseribe precisely the CW decomposition of the one point compactification
of §t; — Qy.; that we will use. We take the one point compactification, following Vassiliev,
becanse the closures of some of the cells that make up Qr — 7, are not contained in
Qr — 7.1, It is sufficient to decompose the one point compactification of each By, This
decomposition allows a generalization of Vassiliev's work to the case of knotted circles; it is
this decomposition which has a natural extension to the case of links.

Recall that our (4, B)-configurations are finite sets of points on circles parameterized by

[0, 2]. Bach configuration J bas & point that oceurs first as we move in the counterclockwise

direction from 0. We eall this point the first point of J, and we include the case where this

first point actually is 0, For each J™ related to J, let ¢1(J”) be the parameter value of

the first point of J7. Continuing sround the circle counter clockwise, let ga(J7) be (the

parameter value of) the next point after ¢1(J7). lLet qa(J™), .., gory(J7) be the other
points of J* in order taken the same way. We obtain coordinates
QU = (@(J"), (U™ -+, Gun(J7))

for each J* in the configuration space {J” |J” < J}.

Let eF denote an open cell of real dimension k. Decompose {J' | J' ~ J} into two cells
co and ¢; as follows: let .
CD(J) = {(QI:QQ:-"iqp(J))l‘?I & (01271-)} %GP(J)
a() = {(0,¢2,a3 . Qo)) 2 D1,
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This decomposition leads to CW decomposition on the one point compagctification of B;,
which we will call the canonical decomposition. Let p = p(J ). This number pu is the number
of equivalence classes of configurations that are subsets of the faraily {J7|J™ «— J} of J. Let
Ji, Ja, ... Ju be representatives of these equivalence classes. Aside from the compactifying
point, the decomposition of B; has the following cells:

e(, Ji) it {(Q:p; m)IQ € CO(J)JP & M(Pd :Jj):m e S\It}
f(‘I,!JJ') = {(Qspa 3‘)'@ = cl(J):p S M(Fd )Jj):m & S‘P}

where Sy is the interior of the simplex associated to W and where 1 < 7 < p. We call each
(W, J;) & best cell of By and each f(¥,J;) a fived point cell of By. The number of best
cells and the number of fixed point cells are both equal to p times the number of distinct
generating families of J and are both equal to the number of chord diagrams that have
Ji,Ja, v vy Juet O Ju 88 an underlying configuration. The best cells are connected to the
fixed polnt cells in an obvious way. We will discuss how the cells are oriented and how they
are glued together in the next section. We will need to use the terms best cell and fized
point cell very frequently, so from now on we will eall any best cell a BC and any fixed point
cell a FPC.

Since 1y — 7.1 is the union of J-blocks over all J of complexity J, we have described
a cellular tructure on the one point compactification of £27 — Qf1s

We will now describe an otientstion of these cells, Let J be an (4, B)-configuration.
First, order the points of p(J) points of J as they were given in the above coordinate
expression Q(J). We will call this the standard ordering of the points of J.

Let g1,02,.-+, 944 be the groupings of points in the A-configuration and let a; be the
cardinality of gi;, 1 £ 1 £ §A. Let 8y, 080,..., % be the b points of the B-configuration taken
in order.

Order the groupings lexicographically, setting ¢ < g; if and only if ¢; < a; and if
a; == a; setting g < g; if and only if min{g;) < min(g;), where the min is taken relative to
the standard ordering of points.

Following 3.3 in [V}, an orientation of (¥, J) or f (¥, J) consists of orientations of Sy,
of M{I'¢,J) and of ¢p or ¢1, respectively.

To orient Sg we order its vertices, Suppose (t1,81) and (t2, s2) are pairs from W and
t1, 81,12, 82 € g; for some i. Set (t1,81) < (2, $2) if and only if min(t;, 51) % min(lz, s2), and
if min(ty, 6,) = min(ty, s2), thenset (£1,81) < (f2, 52) if and only if max(ts, 1) < max(tg, $2).
If (11, 51) and (iz,89) are pairs in ¥ where £1,81 € g and £z, 82 € g4, then (11, 51) < (f2, 82)
if and only if ¢: < g5. The pairs (B1,01),--- (Bs, ) appear after the pairs from the A-
configuration and in the order that i, ..., appear on S'. We will call this ordering the
standard ordering of the pairs of J.

We orient 8! x (0,1)7Y) in the standard way. This gives an orientation of ¢o and ).

To orient M(I,J), first fix an orientation of I & R*. Recall that J determines
3] functions linear in the coordinates (aizx) of ¢ Let p € Y4 and let py,p2,p3 be the
coordinate functions of p : §1 —» R®. The 37 functions come in two forms:
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L opit)—pe(s}for 1< r <3 and s,t€J, and
2, %lmt for1l <r<3andtel
Now let

t11, k12, - tlay € 01
to1,002, .+ oy l0an € F2s

tiar bgazs - biags € JHA
Bi,...,0 € the B-configuration of J

be the points of J, written such that the groupings g1,..., g4 8re in the order glven above,
and both the points of each grouping and the points of the B-configuration of J inherit
their order from the standard ordering of the points of J.

We will define & 3I-form wy that orients the orthogonal complement of M (e, J)y ¢
rd 22 RO¥, Fach grouping g = {ti1,ti2, .-, biay } contributes a 3(ai — 1)-form to the form
wy. This 3{a; — 1)-form is the wedge product, in ascending order, of the 3-forms

APy (tiest) — Pr(tiie)) A d(Paltiker) — P2(tin)) A dlpa(bipr) ~ Pa(tik))
where 1 < k < a; — 1. Let d(t; g1 —tik) be & shorthand for this 3-form. Then
d(tig = tir) A d{tis — tiz) - -+ d(tay = tay—1)

is a shorthand for the 3(g; — 1)-form. Similiarly, if §; is in the B-configuration of J, let
d(8f;) be a shorthand for the 3-form

Opy Bpa Ipa
d (“ét_h:‘ﬁj) nd (—55“&;;3,-) Ad ("ﬁlnmﬁj) :

The result is that wy can be expressed as follows:
wy = dtia — t1) Ad(tiz ~t12) A== A d{Baes — tiAagasy) NAOBL) A= A d(asy).

Now we will define an orientation on M (X%, J). Fix an orientation on all of I, which we
recall i 3N dimensional. The 3/-form wy defines a basis B, of the orthogonal complement
of the 3N — 3] dimenslonal space I, Now pick a basis By of 3NV — 31 vectors for M (re, Jy
in such a way that the basis B = By U By is a positively oriented basis for e, We give
M(T?, J) the orientation it inherits from Ba.

2.3 The Differential dy

To describe the action of do on the cellular chain group Cy(Qr — - ), it is sufficient to
describe its action on the generating cells of that group. First, let’s describe the boundary
of e(¥,J) in By for some (A, B)-configuration J. Three types of cells can occur in the
boundary of e(¥,J).
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1. f(¥,J) is in the boundary of e(¥,.J) as ¢; tends to zero. Let J™ be a configuration
telated to J and let ¥ be the generating family of J" corresponding to ¥. Let
F(¥",J7) be the FPC corresponding to J™. If the first point of J" corresponds to the
last point of J, then f(¥",J") is in the boundary of e(¥, J) as g4 tends to zero. The
incidence coefficient of f(¥,J) in dofe(¥,J)) is (—1)**1, where a = dim(S;). The
incidence coefficient of f(%", J) in dpe(¥, J) Is (—1)*n, where 7 is the coefficlent that
makes the orlentations of e(¥, J) and f(¥7,J7) compatible. We will see shortly that
n = 1if J and J" are [I]-configurations. The integer n = &1 iz called the relative
orientation coefficient, or ROC for short, of the BC’s corresponding to J and J7.

. A generator corresponding to the BC e of an [I — 1]* or (I}, configuration J occurs
in the boundary of (¥, J) when the configuration J underlying e* is obtained from
J by an edge contraction. Diagramatically this is realized by contracting the edge on
5! between two points. Let’s describe the incidence coefficient of ¢* in do(ew,r) when
e* arises from an allowed edge contraction. Let

¢ and s be two adjacent points of J contracting to a point r in J,

» o= dim(Sy), |

o b= max(n(t}),n(s)), where n(t) is the number, in the standard ordering of points,
of the point %,

» p =the number, in the standard ordering of pairs, of the pair (¢, s), provided that
(t,s) is & pair in ¥,

» ¢ =the number, in the standard ordering of pairs, of the pair (r, r}, provided that
(t,2) is a pair in ¥,

» ( = 1 be the orientation compatibility of M(T'%, .J) and M (1'%, J),

¢ ¢ = 1 be the parity of renumbering the pairs as we pass from the standard
ordering of the pairs of J to the standard ordering of the pairs of J; this is the
orientation compatibility between S; and S5;.

In the pietured contractions below, we assume that s and ¢ are the points that bound
the contracting edge in the left hand figures and in the right hand figures that » is
the point that replaces s and 4 when the edge contracts.

\@5( contracts to \K—/ with incidence coeffictent ¢(—1)P=atatb,

T r

" N_.—’ contracts to \\r«—/ with incidence coefficient ¢(—1)P—9Fa+b,

+ ¥ =

u contracts to \M'/ with incidence coeffictent e{(—1)*+®,

+ ]

M contracts to \leth incidence coefficient e ( —1)atb,

In the third case above, the plctured contraction is allowed if & and ¢ are not in the
same grouping or are in the same grouping but are not connected by a chain of less
than three chords. In the last case, the contraction is allowed if ¢ and ¢ are not in
the same grouping. We note that in all of the figurs except the second, there may be
more than one chord attaching either to s or to t. Any other type of edge contraction
is not allowed, since other types of edge contraction have either no meaning in the
context of contracting segments of curves that lie between self intersection points, or
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the boundary is not in £2; —~Qy..;. The contraction that occurs when ¢ is the last point
of the configuration and s is the first point is also not allowed, because the last point
is moving towards s fixed first point at 0. The cell that is obtained has codimension
two and lies in the boundary of the FPC associated to the given diagram.

3. Lastly, a generator f(%,J) oceurs in the boundary of e(¥, J) where ¥ Is o generating
family obtained from ¥ by deleting & chord. The restriction is that ¥’ still be & gen-
erating family of J. This boundary is & boundary in Sy, and the incidence coetlicient
iz (=1)?7}, where p is the number of the pair corresponding to the deleted arc.

The boundary of a fixed point cell is defined In the same way but we are allowed to
contract the last edge between the last and first points, since in this case the codimension
of the bounding cell is one. '

Let Xy be the free abelian group generated by the BC's of all [I} and (I}, configura-
tions and let ¥7 be the free abelian group generated by the BC's of the [I —1]* and {I)4
configurations and the FPC’s of [I] and (I)-configurations.

By definition ¥7 is equal to the cellular chain group Canna(R2y —~ (271 U Z 7). Now let
73 Canea(Q = Qr1) — Con-a(Qr — (-1 U Z1))
be projection. Define hy : X7 — ¥7 as the composition 7 o dp. By corollary 2.2,
ker(hs) & Han-1{80 — Q711).

Fxample with Figure 2.8 See the pictured chord diagram. The pairs, in order, are
(1,3),(2,4),(2,5) and (4,5). We've numbered the pairs by integers (1),(2). .. on the corre-
sponding chords.

1

If we use the diagrams to represent generating best cells, then hy can be calculated entirely
diagramatically. When o diagram is to stand for o FPC, we have put an f (to stand for
fized) next to the first point, which has been fived ot zero.

Q-0 O-O-G

2.4 Relative Orientation Coefficients

Because we are working with immersed circles in R® rather than immersed lines, the 3N —1
dimensional cells from noncomplicated configurations, our best cells, contain additional
boundary terms, i.e. the fixed point cells. Suppose a FPC f lies in the boundaries of two
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BC's e; and e corresponding to related configurations Jy and Jz. By comstruction f inberits
an orientation from the BC that it bounds, as the first point of the BC moves to zero. We
can compare this orientation with the one it receives as a bounding cell of the other BC.
We call the compatibility &1 of these two orientations a relative orientation coefficient or
ROC for shert. If two BC's do not share a common FPC in their boundary, then we extend
the notion of a ROC to be the produet of a chain of ROC’s taken between a chain of BC's
between the two given ones.

Let's call two BC's adjecent if their underlying configurations are related and the BC's
share a common FPC in their boundary. We want to develop a shorthand, using the chord
disgrams, which will allow us to caleulate ROC’s quickly.

We will identify BCO’s with the chord diagrams that describe them. If & chord diagram
is to stand for a FPC, we will say so explieitly, Fix a configuration J and let e be its BC.
First, label the points of a chord diagram by 1,2,3,...,p(J) starting with the first point
and proceeding counterclockwise. Now, label the chords of the diagram by (1),(2),... in
the order assigned to the corresponding pairs in ¥, Finally, write down the shorthand for
the 3/-form wy that induces the orlentation on M (T, J) (see section 2.2).

Let €; and eg be adjacent BC's of related configurations J) and Ja, so that the first point
of Jy corresponds to the second point of Jo. First, we record how the points are renumbered
as we switch from the ordering of the points of J) to the ordering of the points of J;. Now
let

e PP(ey,eq) = (~1)#)-1, which is the parity between the orderings of points on the
two BCs,

» CP(e;,e2)= the parity between the orderings of chords on (the diagrams of) the two
B(C’s,
s FP(ey,ez)= the parity of the orientation switch between M(I'%, J;) and M (I, Jz).
FP is the product of the parities of reordering the points in each of the groupings.
The ROC between ey and e is the product ROC(ey, e2)=FPP(es, e2)CP(e1, e2)FP(ey, 7).

Example with Figure 2.9 Pictured are two adjocent BC's, unlabelled above and labelled

below. In this case
PP=(~1)" = -1

L (2 (3)
OF = 59”(533 0 cz))=1
1 3Y/7/2 5\(6 4
FP:'*-"”(l 3)(2 5)(4 6)

therefore ROC= 1.
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Unlabelled:

Labelled:
3

T 6

Lemma 2.10 If e; and ep are adjacent best cells of related [I) -conﬂgumtz’oné Jv and Ja,
then the ROC{ey, ea) = 1.

Proof: Assume that the first point of ey corresponds to the second point of ez, then PP= —1
since p(J) is even. CP ls equal to the factor of FP that arises from changing the order in
which the 3-forms making up wy, are wedged. The other factor of FP is & —1, because
the pair (1,%) in e is switched to the pair (p(J),t — 1) in e; and mmst be reordered to
{t — 1, p(J}). This switch is a kind of change in polarity in the given 3-form. The result is
that (CP)(FP)= —1, hence ROC(ey,€2) = 1. U

Remark: In the last example e; would correspond to the unmarked diagram on the right
and ez to the one on the left. The pair (1,5) in ez becomes (4,6) in e;. Since 1 + 6 and
5 w4, the pair (1,5) becomes (6, 4), which is written in the wrong order, so order of the
points in the pair switches from (6, 4) to (4,6) and results in the —1 that occurs as the
gecond factor of FP.

2.5 Actuality Tables and Their Use

Foreach cycley & EfI 7 we hope to fill out an actuality table for . If 4 survives nontrivially
all the way to Bzl then we can complete an actuality table for v and v will give us a
knot invariant. If y fails to make it nontrivially to into E-%7 for some r, 1 < r < o0, then
we are not able to complete an actuality table for -, we do not obtain an invariant and we
must scrap the project for 7. In some sense the completed actuality table for an element in
E=IT gives a history of how that element progressed through the spectral sequence. We will
explain how this works in §2.6. We will, following Vassiliev, give an inductive algorithm in
§2.6 that will allow us to discover whether or not a cycle makes it nontrivially from E-77 to
E” z{if , for any », 1 < r < o0, If it does, then we will see how the needed data is entered in
the associated actuality table, and if it does not we will see why it fails. It is worth noting
that we need not work out the entive spectral sequence to use the algorithm; rather, we can

study the progress of v alone without having to calculate anything else.

In this section we will assume that we have filled out an actuality table 7., for some
v € EZP. Let us now describe what is in the table and how we use the table.
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T., has I rows,numbered 1,2,...,7 from bottom to top. In the §* row there is one box
for each equivalence class of [3] conﬁgumtmns In each box in the top row, there are two

pieces of information:
1. the diagram corresponding to {the BC of) the given configuration type,

2. an integ}*:}', called the actuality index; the actuality index is calculated when we caleu-
late £ 5.
~j

In each box in the 7% row, 1 £ j £ I — 1, there are three pieces of information. Like the
boxes in the top row, each of these boxes contains the chord diagram of a noncomplicated
configuration type of complexity j and an actuality index. Additionally, each box contains
a representolive curve, which is a curve that realizes some configuration in the configuration
class. There are only two restrictions. First, if the configuration is inadmissable, then the
loop of the curve associated to the part of 5* that lies between the adjacent pair must not
be knotted to any other part of the curve. Such & curve is called a good model for the
configuration. Secondly, two related configurations must alweys be represented by the same
curve. We will see shortly why no representative curves are needed for the boxes in the top
row of the table.

Example with Figure 2.11 Here is the chord diagram of en inadmissable configuration
J and three immersed curves Ky, Kz and Ky respecting J. The curve Ky is not o good
model for J, while the other twe both are.

° B Pre

Example with Figure 2.12 Pictured i3 the actuality table of the simplest nontrivial in-
variant, which corresponds to a cycle in By 22 gt

5
1 @
o]
It is enstest to describe the calculation of the invariant axiomatically, This explanation
will show how the table is used.
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Let X; be the nonsingular part of ¥ N I'? j.e. only those points of % that respect
configurations of complexity one and have no other singularities or self intersections. We
define ©» to be the points of £ NT% that respect configurations of complexity two and
don’t have additiona) self intersections or singular points. We define Xj, X, ... similiarly.
For a mote careful treatment of the following notion, see Stanford, [S], or Chapter two of
Birman-Lin, (BL).

DEFINITION: Let K™ & ., be an immersion with m transverse double points. We will eall
stich immersions nice immersions. A graph of K™ is a drawing of a planar representation
of K™ in which all crossings are tvanverse, only two strands cross at any crossing and the
m double points appear as crossings without crossing information. If two curve segments
cross in the planar drawing of K™ but do not touch in K™ itself, then one of the segments
is drawn with a small break to indicate that it crosses under the other one. When m =10,
K% is & knot and the graph of K0 is a knot diagram in the usual sense.

Example with Figure 2.18 Two knotted graphs K and K3:

Let (Ky, K_,K]}) be the triple consisting of two links K. and K. and a nice immersion
K. Assume that K., K. and K} vary in the location of a single crossing in the manner
pictured below:

X X

Ky K. Kl

The invariant V., satisfies the following recursive relatlon:
Va(Kp) = Vi (K-) = Ty (K;)

with the initial condition

where I/ is an unknotted circle and where Z,(K}) is a number, called the index of K,
associated to the immersion K2, This index can be calculated from the table, as we will
explain. The condition that V,(U} = 0 is by choice.

What have we done? If K is any knot, we connect K to U by a homotopy in general
position relative to £. This homotopy is & curve in £; and passes through % only at some
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points K1, Ki,..., K! of &;. Each of these passages through T can be viewed as crmslng
changes. Using the recursive formula we find that

Vy(K) = 2 aZy(K)
i=1

where ¢ = =1 depending on how the recursion formule is used. To find Z,(K}) we need
to calculate again using a new set of recursive formulas. For 1 £ 7 < J —1 and the triple
(K1, K7 7, K31 analogous to (K4, K_, K1) above, the general recursion formula is:

Z,(K5) ~ LK) = (—~1MOnlelt g, (gei )

with an initial condition
L,C)=T

for each curve C in the 7" row of the actuality table and associated actuality index Z. The
curves K+’ and K’ are nice immersions that both realize some [j]-configuration J, and the
curve KJH! realizes a [j-+1}-configuration J whose chord diagram can be obtained from that
of J by adding a pair of points ¢t and s and a chord connecting them to the chord diagram
of J. Let n(t) and n(s) be the numbers assigned to ¢ and s in the standard ordering of the
points of J.

So, to find Z,(K7) for an arbitrary curve realizing a [j]-configuration J, we connect K7
to €7 by a homotopy in E; that is in general position relative to Xy, where 7 is the
eurve representing J in the table. Z,(K7) is then the sum of Z,(C?) with slgns obtained
by the directions of the passages through £;4;. The number Z,(C?) is the actuality index
in the box corresponding to J. One of the things we must show is that this assignment of
numbers to curves is independent of the choice of homotopy from either K to U or from

K7 to ¢,
Example with Figure 2.14 An ezample of K4, K_ and K}:

P&

An example of J, J, K3, K2 and K2 The curves K3 and K3 both realize J. The
curve K2 realizes J.

LN

PN
()
i \v(
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At the Ith gtage of calculation, the index Z)(K 1y of every curve K7 realizing a given
[I}-configuration J is assigned the actuality index of J from the table, This is why no
representative curves are needed for the top row. This actuality index is the coefficient with
¥ which the BC of J enters the cycle 4. By the general recursion formula above, any curve
t with more than I self intersections is assigned the index 0, This last property, that for

moe I

I’?(Km) =0,

; is the main property which defines an invariant of finite type. A formal definition of link
a l invariants of finite type will be presented in §4.4.

' Recall that a (j) ,-configuration is an (A4, B)-configuration that has an empty B-configuration,
': and whose A-configuration has j — 2 groupings of cardinality 2 and a single grouping of

' cardinality 3. An extended actuality table is an actuality table augmented by the addition

of enough boxes in the 4* row, 1 < § < I, to include diagramns, representative curves and
actuality indices for all of the {j) ,-configurations. The only restriction is that the repre-
sentative curve, for a given (j) ,-configuration, is to be chosen so that the frame of vectors
piven by the tangent directions at the triple point will be positively oriented.

26 The Main Results in the Casen =1

We can now prove our first main result. In the course of the proof we will learn how to
enter the actuality indices in an arbitrary row of the extended actuality table: we will see
that there are geometric reasons why the invariant is of finite type and that it is indeed an
invariant.

First, let's recall the notion of a knot invariant of finite type.
DEFINITION: Let (V,T) be the pair consisting of & Z-valued invariant Y of n component
links and a Z-valued invariant Z of nice immersions of n circles. Let U, Ly, L., L}, I,
L2, Lith) s t, n(t) and n(s) all be as in §2.5. The pair (V,I) is called & link invarient of
finite type of order Iif it satisfies the following four axioms:

V1. W(U) =0,
Vo, V(K,.) — V(K_) = I{K])
T(KL) — T(KL) = (—1yM@nl g (g H),

V3, Z(K™) =0if m > I,

Ve, Z( S ) =0,
and (V,Z) has the additional data of an actuslity table.
Theorem 2.15 Let d be a fixed positive integer. Let

v & B (d) C Haper() © Han1(Q) 2 Hay (14N E)

where N = 2d+1 and I < 3L, Then there is o knot invariant Vo ond an invarient Zy of
nice tmmersions such that the pair (Vy,Z,) is a knot invariant of finite type of order I
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Proof: First, we will study the geometry of £ and give an inductive procedure deseribing
how the actuality indices are entered into the actuality table. Within the description of that
procedure we will see why our invariants satisfy axioms V1, V2, V3 and V4. Foliowing this
discussion we will state a theorem which shows that the invariants are indeed invariants.
The proof of the generalization of this theorem to links is postponed until Chapter three.

Suppose that v € By I ond we want to enter the actuality indices in the top row of a
prospective extended actuelity table for .

DEFINITION: Let v € Fj LI 1et 4 be expressed as

7= Ziawi

when written as a chain of BC’s from the standard decomposition of 2y — {271, where each
e; 1§ 8 3V — 1 dimensional BC and each o ls an integer. For each i, let J; be the (1] or {I)4
configuration corresponding to é;. Then o is the actuality index of J; entered into the box,
corresponding to J;, in the prospective extended actuality table of 7.

Now let’s describe an inductive algorithm for finding and entering actuality indices in
rows [ — 1,1 —2,...,1 in the extended actuality table. If this algorithm can be carried out
at each step, then we will have shown that -y survives the spectral sequence nontrivially,
and we will have completed the extended actuality table for 7.

For the remainder of this section, fix v € BT LI Tn calculating the spectral sequence to
this point, we have entered the actuslity indices into the table on rows II-1,I-2,...,1—
1. Let’s see how we'll caleulate the indices for row I —1. We want to find the boundary
of 4 in e — (Qr—r—1UZ17), and express this boundary s a linear combination of 3NV —2
dimensional BC’s and FPC's. An inductive algorithm for obtaining this linear combination
is explained here, and can also be found in section 4.5 of [V]. An example of this algorithm,
as well as the application of our discussion in this section, is given in §4.3.

Suppose that J is an [T~r+1] or (I —r+ 1) , configuration. Let & be the BC of J. Let
J be g [I 7] or {I —r) 4 configuration (resp) obtained by deleting a pair of points from J.
Let e be the BC of J. Inside e the set

{(p,m)|peM(I‘d,J) HM(I‘d:j):wESJ}

forms a (3N — 2 dimensional) hypersurface, and this hypersurface is the boundary of &
inside e. The union H, of these hypersurfaces, over all possible J, subdivides e inio 3N -1
dimensional elementary components. The 3N —2 dimensional cells of this subdivision
correspond to certain components of £_pp1. These 3N ~2 dimensional cells inherit their
orientation from e. Bach e in Qy—r — (furwi Zi—p) ls similiarly subdivided. Note that
this subdivision induces a new cellular decomposition of Sy = (Qfp_t U Zy.r); thisis the
subject of the next lemma.

Define the geometric boundary 8,y of 7y by the above and by linearity, with multiplicity
given by the index of the given component of £1—ry1. This index can be found using of the
actuslity table and the crossing change formulas. &y is & cycle by an argument given in
4.5.1 in [V}, The following definitions can be found in 4.5.2 in [V].

DEFINITION: A chain of elementary components is called compatible with 8 if in its
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intersection with ary 3NV — 1 dimensional BC e, its boundary is equal to the intersection of
&y and e, '

To get a better understanding of what & compatible chain is, let
L -1 be 1 BC i!'l Q]mr - ($2I"T—1 U zj....r),
» {¢;} be the set of elementary components of e.

The boundary of each ¢; consists of a sum, with appropriate coefficients, of whichever 3N —2
dimensional hypersurfaces of H, surround ¢;, and also a sum of elementary components of
3N — 2 dimensional BC’s that lie in the intersection of ¢; with the boundary of e inside
e (§2r U Zr o). Suppose that £ is a compatible chain, and that g; is the coefficient of
¢; in £, for each 1. Then 8,4Me is equal to the boundary of 3 aieq in Qp—p ~ (Qrara1UZr-r).

DEFINITION: Let J be an [[ —r] or {I — )4 configuration and let K 7 be the curve that
represents J in the actuality table. Let e be the associated BC. We will abuse notation here
by talking about an elementary component of e containing a curve. We really mean that
e contains all points (p,z) where p is the curve and z € S7 . Given that, the elementary
component of e that containg K=" is called the main component of e. The FPC’s are
similiarly subdivided. Each FPC is associated to two BC's, both of which are represented
by the same curve in the actuality table. The elementary component of any FPC that
contains the curve which represents the assoctated BC’s in the table is called the main

component of the FPC.

Lemma 2.16 The set of chains compatible with 8, is isomorphic to X7_r.

Proof: This is proved as the (only) lemma in section 4.5 in [V]. The coefficient with which
the main component enters into any compatible chain determines, by means of the crossing
change formulas, the coefficients with which all the other elementary components enter the

chain.

Remark: This idea is really the central idea behind the Vassiliev knot invarianis and this is
where the crossing change formulas enter.

Initially, choose a chain £ that is compatible with dhy and has the property that the
main component of each BC enters £ with coefficient zexo.

There are three types of 3N — 2 dimensional cells from the canonical decomposition of
the space .y — (Q/or—1 U &r-y): the BC's from (1 — ry%-configurations, those from [I —r]
-configurations and the FPC’s from [I — 7] and {I — 1}, configurations. Each of these is
subdivided into elementary components by <. Define the main components of these cells
as follows: the main component of a BC from an (J - ryy-configurstion is defined to be
the elementary component containing the curve that represents the associated (I —1)4-
configuration in the actuality table. Similiarly, define the main component of a 3N — 2
dimensional FPC to be the component that contains the curve representing the associated
family of [I — r)-configurations on the table, For the BC of an [I ~ 7 — 1]*-configuration,
let the main component be the component of the chosen curve realizing the configuration
family. 0
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Example with Figure 2.17 In the first figure are ezamples of curves chosen to represent
a (3) 4-configuration and an inadmissable [3]-configuration.

& (T

In this figure are curves chosen to represent the associated (3)%-configuration, [2)*-
configuration and FPC of the above [3)-configuration.

& D B

The boundary of ¢ is &y plus a linear combination of elementary components from
the 3N - 2 dimensional cells sbove. Call this linear combination d,v. The coefficients
with which the main components of the BC's and FPC’s appear in d,y will determine the
coefficients with which the other elementary components enter.

Since the main components of each 3NV — 1 dimensional BC enter ¢ with coefficient
%ero, the corresponding main components of all 3V ~ 2 dimensional FPC's enter dyy with
coeflicient zero. The main components of BC’s from [I — » — 1]*-configurations also enter
dyy with coefficient zero. We'll need a lemma of Birman and Lin, leroma 3.4 in [BL1], to
prove this,

Lemma 2.18 If J is an inadmissible [I)-configuration and v € Ey", then the BC of J
enters o with coefficient zero.

Proof: Following Birman-Lin, suppose that the BC of an inadmissable configuration entered
Yo with nonzero coefficient. In general, this cell has the BC from an [T — 2]*-configuration
in its boundary. If this boundary cell is to be cancelled, then some other BC, with nonzero
coefficient in 7o, must have the same cell in its boundary. This cannot happen, since the
configurations of these two cells would be identical and, therefore, the cells would not be
distinet. The result is that such a BC must enter 4, with coefficlent zero. 0

Remark: We said in generel. ¥ J is an inadmissible configuration that has its only isolated
chord between first and last potnts, then there is no BC from an [I — 1]*-configuration in
its boundary. However, if the BC from J enters the cycle v with nonzero coefficient, then
BC's from each related configuration cless must enter with the same coefBelent; otherwise
the FPC’s will not cancel appropriately. This is one of the central ideas behind the proof
of theorem 3.16, which generslizes theorem 2.21.

3l



Lemma 2.19 Any BCe* from an [I —r—1]*-configuration enters dry unth coefficient zero.

Proof: Inductively, assume that the result holds for t =1,2,3,...,7 — 1. The main compo-
nent of e* lies in the boundary of some elementary component C of the BC e of & unique
inadmissable configuration J. The main component C, of e has coefficient zero in & by hy-
pothesis, It follows that € also has zero coeflicient in £, since in travelling from C to Cp the
Jumps across the walls of the subdivision occur in components of £y.r41 that have index
zero by induction. Note that each of these jumps is given by the crossing change formula.
This ig the case where the curve Ki+! has index zero (by induction) and either KJ or K
has index zero. The result will be that the remaining curve will have index zero, O

Suppose [ is 8 3N -2 dimensional FPC lying in the boundary of some 3N -1 dimensional
BC e. The main component of f has coeflicient zero in dyy hecanse the main component

of e enters £ with coefficient zero.

We need to calculate the coefficient with which (the matn component of) a BC of an
(I — )% -configuration enters dry. What follows can also be found in section 4.5.3 in [V],
as well in section 1.6 in [BL1].

Suppose that e is the BC of an {I —r)%- configuration J. Let J be the (I —7)4 con-
figuration obtained diagramatically by adding the missing chord to the diagram for J. Let
K be the curve assigned to J in the table. There are six ways to "spread” or resolve the
triple point of the curve into two double points, thus obtaining six eurves respecting [I —7]-
eonfigurations. Some two of these curves, K and Ky, respect {I — r]-configurations J; and
Jz that degenerate under a particular edge contraction to J. Let ey and ez be the BC's
of Jy and Ja, respectively, and let K and Kz be the curves representing J; and Jy on the
actuality table, respectively.

Example with Figure 2.20 Here ere examples of J, J, Ji and Ja:

Examples of K, Ky and Ka:

Next, using the crossing change formulas, calenlate the indices of K1 and K; with the
assumption that K and K3 have index zero. The elementary components of ¢; and eg that
contain K, and Kz enter £ with these indices. If these indices are a; and ag, respectively,
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and & is the incidence coefficient of ¢ in hy_.(e;) and in hr.r(e2) (which are the same), then
the coefficient of e in dry 1s b(a; + ag).

Now, if possible, find & chain «, of 3N -1 dimensional BC's from [{ — 7] and (I —7) 4
configurations, with the property that hr..(a) +dyy = 0. The isomorphism from X[, to
compatible chains sends o to & chain £y compatible with 8, . The main component of each
BC appears in £, with the same coefficient with which the given BC appeared in a. This
new choice of a compatible chain, if such a choice exists, insures that d,v is equal to the
boundary of something and thereby insures that ~, survives as a nonzero cycle to the next
stage. Let J be an [I —r] or (I —r) 4 configuration, and let e be its BC. The coeffcient,
with which e enters ¢ is entered into the actuality table as the actuality index for J. If no
such chain @ can be found, then -y does not survive, since the homology class dry of di is
not zero. We must then scrap the project. Kontsevich, in [K1], has claimed to have shown
that in the case n = 1 the spectral sequence collapses at EP?, which implies that such an

o can always be found.

DEFINITION: Let J be an [I — 7} or (I — ), configuration and let e be its BC. Let o be
8 chain chosen such that _
hj..,.p((.!) + dr"y =0.

The actuality index of J is defined to be the coefficlent with which ¢ enters the chain a.

DEFINITION: Let v, o, and £, be as above. Let K=" be a nice immersion, with I —r
double points, that realizes some {I — r]-configuration .J and lies in the BC e corresponding
to J. Let ¢ be the elementary component of J that containg KZ=", Let a be the coefficient
with which ¢ enters £,; then we define

I(K™") = a.
It is immediate that for any other curve K=" in e, we have
IR = L (KT-").

We can also see that the invariant satisfies V4 by lemrma 2.19. It satisfies V2 by lemma
2.16. If v survives nontrivially to the end and we complete an actuality table for +, then
no cells from m — O, for 7 > I, contribute to the progress of v through the spectral
sequence. Hence, it is natural to define Z,(K™) = 0 for m > I, thereby satisfying V3. The
axiom V1 is satisfied by definition. The next theorem will conclude the proof of theorem
2.15 and will establish that our assignment of numbers to knots and nice immersions is an
invariant.

Theorem 2.21 Let v € El\T ¢ Hyn-1 ().

1 Ifj 1 and Jy and J2 are related {j]-configurations, then the actuality indices of J,
and Jo are equal.

2 IfK i’ and Kg realize Jy and Jy, respectively, and both have the same image in R,

then ' _
I'V(Kf) e Iv(Kg)-

3. If K7 realizes a [j]-configuration J, then the number Z,(K?) is independent of the
choice of path taken from K7 to C7, where C7 represents J in the actuality table T,
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Proof: We will prove the more general result for links as theorem 3.17. O

This concludes the proof of theorem 2.15. Note that our calculations did not depend
on d, which was the maximum degree of the Fourier polynomials making up the coordinate
functions of the maps of I'Y. It has been implicit up to now that for each 4, there is an
associated spectral scquenco EP9(d). Qur discussion up to now is valid for the groups
ErhH(dy as long as T < #%H where N = 2d + 1.

Theorem 2.22 Let d be a fized positive integer, I < 3tL where N = 2d+1. Lety € B0
and let d > d. Then for eachr =1,2,...,00, we have

B (d) 2 BYM ().

Moreover, if 7 € B (d) corresponds via this isomorphism to v € B, then for each
knot K and each mice immersion K7 in ' C T4 we have

V3(K) =Wy (K)

and '
Ty (K7) = Ty (K).

A Vassiliev knot invariant of order I is defined to be a cyele in
limg oo Han-1(21(d))

where d is taken sufficlently large to begin with, and evaluation on a knot is as given above.
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3 Generalizing the Construction to Links

3.1 OQur Goal

Our goal is to generalize the construction of the knot invariants of Chapter two to obtam an
invariant of links, As before, our desire is to complete an actuality table T, for v & El

In 3.2, we will give the generalizations of the definitions of relatedness and J-block. We
will construct a more general type of chord diagram, and then give generalizations of the
results of section 2.1. In section 3.3, we give the much more complicated CW-decornposition
of the space Qr —{15..; and discuss the action of the initial differential dy on this space. The
relative orientation eoefficients (ROC) play a greater role with links than they do in the case
of knots, particularly in terms of calculating the cancellation of FPC’s in the boundary of
chains of BC’s. We will devote section 3.4 to this discussion. Finally, in section 3.5, we will
explore the higher order dlﬁerentmls in an effort to understand how to fill out the actuality

table for a given v € E1

3.2 Chord Diagrams, Relatedness, J-blocks and Generalizations of the
Preliminary Results

For the remainder of this chapter, fix an integer n = 2, a large integer d and let I be an
integer such that I < -«-g‘f— where N = n(2d + 1). We will assume that all curves lie in
I'? C Ly, and that all configurations are configurations on [T ;5% ', Recall that £, consists
of maps from an ardered disjoint union of n circles to R,

Let J be an (4, B, C)-configuration, and let ¥ be & generating collection of J. As before,
a chord diagram can be employed to encode the information carried by the triple consisting
of:

o The equivalence class {J'|J' ~ J}.
* A generating collection ¥ of J.
» The set of maps M (', J) that respect J.

Let p;(J) be the number of geometrically distinct points on JN(51);. The chord diagram
will consist of n circles, The circles are pictured in order left to right and are assumed to have
counterclockwise orientation. On the i** copy of S, there are p(J) points. If pi(J) # 0,
then the configuration J has a first point on (§);, and this point is marked on the chord
diagram by a 1. The points of each grouping of the A and C configurations of J are
interconnected by a collection of chords. These chords are given in the following way: if s
and ¢ are a pair of points in either the A or C configuration of J and the pair (s,t) is one of
the pairs of ¥, then there is a chord running from s to t in the chord diagram. The points
of the B-configuration of J are each marked by a *. Recall that the C-configuration of J
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congists of all groupings of points that have some two points on different copies of lSl. It
follows that any chord that connects two different circles will correspond to s pair of points
from some grouping in the C-configuration of J.

Example with Figure 3.1 Pictured are two chord diagrams, one for n=2 and one for
7no=4.

DEFINITION: Let J be an (A4, 5, C)-configuration. If J” determines an equivalence class
of configurations whose diagrams are identical to the diagrams associated with {J|F ~J}
except that they vary by the location of some of their first points, then we say that J and
J* are related, and we denote this by J™ « J. We call the set of configurations related to

J the family of J.

Let
By = JM(T% J) x $5)

where the union is taken over the family of J. This union, as before, is called a J-block.
We will now state the generalizations of the results from section 2.1.

Lemma 8.2 If Jy and Ja are nonrelated configurations of complexzity I, then By, NB;, =0
Proof: The proof is exactly the same as that of lemma 2.2, T

Again, let Z; be the union of all the J-blocks from complicated configurations.
Lemma 3.3 Z; s closed in 25 — Qp-1.
Proof: The proof is exactly the same as that of lemma 2.3, 1
Theorem 3.4 For each I, Hu(Zy) =0 when k > 3N — 2,

Proof: The proof of this theorem is a long but straightforward generalization of theorem
3.1.2 in [V] and is found in Chapter five. O

The exact sequence of chain complexes:
0 = Cr(Z1) = Crl(Sr = Qy_y) = Colr ~ (=1 U Z1)) = Ci(Sh — -1, Z1) = 0
induces the long exact sequence of homology groups:
ovr H(Z)) — Bl = Q1) D B — (1 U 21)) = Himr(Zg) = -+
Using theorem 3.4 we obtain:

Corollary 8.5 The map ® 1 Hy(Qp ~ 1) — Hi(§% — (211 U Z1)) i3 an isomnorphism
for k> 3N —1 and injective for k = 3N — 2.
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Let p(J) = 1o%, mi(J) be the number of geometrically distinct points in J. The con-
figuration space {J" | J” « J} is homeomorphic to (81)7 x (0, 1)7))~7, where j < n is the
number of circles on which J has points.

We assumed that I < 3L 50 each M(T4, J7) is of dimension 3N -3 and we can view
B as a locally trivial fibration with base {J7|J™ +» J} and fiber M (T4,J) % 85 C T¢xRM,

Theorem 3.6 By is a trivial fibration and is therefore homeomorphic to the product
(JTHT" e T} x M(U4,J) x Sy

Proof: The proof, found in Chapter five, uses some linear algebra and shows explicitly that
the twisting maps are the identity. O

3.3 The CW-Decomposition of Qr—.1, Best Cells and Fixed Point Cells

Recall that to give a CW-decomposition of 2y — {171, we must first take its one point
compactification. We do this, following Vassiliev, because the closures of some of the cells
that make up £y — §3;—, are not contained in Qf — Q1. It is sufficient to decompose the
one point compactification of each By. Fix an (A4, B, C)-configuration J of complexity I
and assume that I = lf%i‘-; As before, each chord diagram corresponds to several cells, of
cseveral different dimensions. The unique largest dimensional one has dimension

p(J) + (3N — 3I) - (the number of chords in the disgram} + b - 1.

Recall that b = the mumber of #’s in the diagram. We can think of each J-block By as a cell
complex obtained by glueing together all of the cells from all of the chord diagrams that
come from J or from any J7 related to J.

Let us give a CW-decomposition of the configurstion space {J7|J" + J}. Without loss
of generality, let us assume that J contains points on each copy of 8% in [T, 5. Remember
that each S is oriented and parameterised by [0, 2m) in the usual way. For each J™ — J
and 1 < i < n, let g1(J7) be the coordinate on (§%); of the first point in J N (8%, ie.
the coordinate of the first point in J* encountered moving counterclockwise from zero on
(51);. This point may actually be at zero. Let g2(J") be the coordinate in the interval
(g (J7),2m) 2 (0,1) of the first point encountered moving counterclockwise from ga and

define qia(J™), @ia(J™), « -+, Gipy gy similiarly. Then
QW) = (qu(d"), gzl oy QoI g21 ()5 - - v Oy IT))

are coordinates for {J7|J7 «» J}, where giy(J7) is the coordinate of the first point of J™ on
the it copy of §* in (81) % (0, 1)4)=". Now we that we have coordinates for {JTJT = J},
we can give & CW-decomposition of the equivalence class {J'| J' ~ J}:

o) = {{a11s0 e Gnpnn) | G2 € (0,2m),1 <1 S}
all) = {{lan.. qﬂ.p,‘(J)) b = 0,401 € (0,2m),2 58 < n}
CE(J) = {(Q11)'-'rQHpn(J))|q21ZO:Q‘H 6(0,271'),1:@ {1)31""”}}
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C:,-,(J) i {(‘711: s :q“pﬂ(.]}) l gn1 =0,¢1 € (01 2r),l sisn— 1]‘
ezl = {(q1ny s Guann) | @11 = go1 = 0,qu €(0,27),3 Li < n}

cklkg(']) s {(QII)H':thpﬂ(J}) I Gry1 = Qkal — 01 i1 € (0: 27")1
-a'E{1,2,...,Ihc;,...,fcg,...,n}.

Generally, for 8 < n, and ky, ke, ..., ks € {1,2,... ,n} such that ky < kg < --- < ky, we have

Chikaks(F) = {10y 1 Grpn (@) | GRat = Qa1 = *+* == Giear == 0, 51 € (0, 21),

i@ 41,2, k1, kgy ey ey ey n}

croa.ald) = {{@1, s Gpay) |41 = 0,1 4 <}
Note that ¢(J) = ) and egyg.k, (J) & e?l)—s,

We will define the canonical decomposition of 1y —$2r..1 analogously to the case of knots.
Let 4 be the number of equivalence classes of configurations that are subsets of the family of
J and let Jy, Ja, ... Ju be representatives of these equivalence classes. By has the following
cells:

e(Ji, ¥) = {(@,p,2)|Qeclk),pe M’ J)z e Se)
S W, ki ke, o0 k) = {(@p2) | Q@ € Crykg.ka(Ji)y P € M(Fd, J),z € S¢}

where l < j<py, 1<sgnandl sk <k <--- <k SN and where ¥ ranges over all
generating collections of J;.

Each e(J;, W) is called a best cell of By and each f(J;, ¥, k1, k2, ..., k) is called an s-
fiwed point cell of By. As before, we will refer to best cells a3 BC’s. When we say FPC, we
will be referring to a 1-fixed point cell. We will call e(J;, ¥) the parent cell of each FPC
f(Js, U(kika.. ks) and call each of these FPC's a child of e(J;, ). Each child receives its
orientation from the parent. The number of BC’s in By is equal to p times the number of
distinet generating families of J and is equal to the number of distinct chord diagrams that
encode one of Ji,Ja,...,J,. Note that in the case of knots, each BC has only one child,
whereas in the case of linke, each BC has multiple children, corresponding to fixing different
combinations of first points at the zero point of the respective copy of gL,

We will initially orient all of these cells as before. Later we will find it convenient to
change some of these orientations. First, we must ovient {J"{J" «» J}, M (14, J) and Sy.
To do this we need to order:

« the set of points in J; this ordering is called the standard ordering of the points of J,
s the groupings of J,

o the set of pairs in an arbitrary generating collection ¥ of Jj this ordering is calied the
stondard ordering of the pairs of ¥,

o the 37 equations that determine the subspace M (T4, .J) of 1'%,
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The points of J are given the same order that the coordinates (X(J) of these points have.
This ordering is established by first numbering the points on each circle starting with the
first point and proceeding counterclockwise. The circles are numbered from 1 to n, and
this imposes a dictionary order on the polnts. This ordering, together with the standard
orientation of (§*)™ x (0,1)P(=", gives an orientation of {J7 | J© « J}

The groupings of J, the pairs of Sy and the 31 equations are ordered in exactly the same
way as they were for knots (see section 2.2), These orderings lead to orientations of S¢ and
M(I', J) in the same way that they did when we worked with knots. These orientations
give an orientation on e(J, ¥) and one on each of its FPC children.

Let’s examine the action of the differential dy on the BC e(J, ). The action of dy on
any FPC f(J, W, k1,...,ks) 15 defined similiarly and we will point out the differences, as we
come to them. * '

"There are three ways in which a cell can occur as a boundary term in do{e(J, ¥)):

1. If J N (8%); is nonempty, then J has a first point g1 on (S1)i. Let f(.J, %(i)) be the
bounding cell of e(J, ¥) obtained by moving g;; to zero. A different codimension one
FPC is obtained when, instead of moving the first point to zero, the last point Bipy( )
is moved to zero from the other side and this cell is an FPC f(J, ¥(3)), where J de-
termines an equivalence class of configurations whose first point on (8%); corresponds
to the last point of J on {$%);. The BC’s of such J and J are called adjacent; see
example 3.8. The incidence coefficient of f(J, ¥(4)) in do(e(J, ¥)) is (—1), where
a = dim(S¢) and ¢; is the number of the first point of J on ($%); in the standard
ordering of points. The incidence coefficient of f(J, ¥(4)) is (—1)%"%+1y, where 7 is
the ROC between e(J, ¥) and e(J, ¥).

2. Edge contraction is exactly as in the case of knots. We do not contract the edge
on (5'); between Gip(y 20d gi1 because this contraction results in an FPC that has
dimension two smaller than that of e(J, ¥).

3. Chord deletion is exactly the same as in the case of knots.

Example with Figure 3.7 The diagram on the left corresponds to the BC e(J,¥) of J
and the one in the center to the BC e(JW) of J. The FPC f(JU(1)) inherits its orientation
from e(JW) and is part of the boundary of both BC’s and is pictured on the right.

}

Let X be the chain complex generated by the chord daigrams corresponding to equiva-
lence classes of (I} 4, (/) and [I} configurations. Let Y7 be the chain complex generated by
the chord diagrams corresponding to equivalence classes of (I)* and [I ~ 1]* configurations
and the FPC’s of (I) 4, (I} and [I] configurations. We define by as before, i.e. hy the map
on chord diagrams given by the boundary map restricted to BC's of noncomplicated con-

figurations, and taking values only in the cellular chain group of cells from noncomplicated
configurations.
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Example with Figure 3.8 This is dy of the BC of a (3) 4~ configuration. When e diagram
stands for o FPC, we put an f next to whichever first point is fized at zero.

+ ' + :
|
Sy ! - !
£
!
+ ) _ £
£ (

N £
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This i3 ha of the same BC:

B0 OO~ -0
(O-O- OO
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3.4 The Main Results

Let e(J, %) and e(J, ¥) be adjacent BC’s, and suppose that J and J vary in that the
first point of J on (§1); corresponds to the last point of J. The FPC f(J,¥(:)) is a
common bounding cell to both BC’s and inherits its orientation from ezg. The ROC
between e(J, U) and e(J, T) is the compatibility between the given orientation of f(J, ¥{1))
and the orientation it recieves as a bounding cell of e(J, ¥).

The ROC is the product of the three numbers PP, CP and FP. These numbers are
defined in the same way as before. To calculate the ROC, we view the transition from
e(J, ¥} to e(J, ®) as a map which renumbers the points of J with the numbers assigned
to the corresponding points in J. This renumbering induces reorderings of the standard
ordering of points, the standard ordering of pairs and the ordering of the 3-forms that wedge
together to become wy and determine the orientation of M (1%, J). The parities of these
three reorderings are PP, CP and FP, respectively. When n = 2, the ROC between adjacent
BC’s from [[}-configurations is not always one.

Example with Figure 3.9 Pictured are diagrams of adjocent BC’s, first unlabelled and
then labelled with the numbers of all points and chords.

1
)y ORE!
v
3 Z Y

The renumbering map i3 given by:

11
2—=2
34
4 pr 3
Therefore:
1 2 3 4
PP = sgn(l 5 4 3)=-~l
(1) 2
or = =1
((1) (2)

13 2 4
FP = sgn(l 3)(2 4)_1

Consequently the ROC is —1.

If we compare our approach in Chapter two to Vassiliev's approach, we see that there
is & one-to-one correspondence between the 3NV — 1 dimensional BC's from noncomplicated
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configurations in our approach and the 3V — 1 dimensional cells from noncomplicated
configurations in Vassiliev's canonical decomposition of {r — 7.y (which he calls oy —
or-1). In some sense, Vassiliev pushes the FPC's out to infinity by considering knots
(knotted graphs) to be embedded (immersed) lines rather than circles. There is a one-to-
one correspondence between ambient isotopy classes of embeddedings of R in R® with fixed
asymptotic directions, embeddings of $? in R3 and embeddings of S! in 5%, We can view
Vassiliev's construction for knots as our construction for knots in the case where the image of
the zero point under each embedding or immersion of 81 is the point at infinity fn $3. Thus
all of these FPC’s can be viewed, in the case of knots, as boundaries at infinity, which, when
we pull them back, cancel 50 nicely that we could ignore them. 7This is not the case with
links. If we ignore the FPC’s in the boundary, certain chains of 3N — 1 dimensional BC’s
appear to be cycles, and the actuality indices arising from these pseudo-cycles contradict the
recursive equations that the invariants satisfy. Another way of saying this is the following:
for each generating cell e in the cellutar chain group Can-1(Qr = (R U Z1)), let B{e)
be the sum of all FPC terms in do(e) and let Ba(e) = do(e) — Bi{e). When n = 1 we have
Ba(y) = 0 = Bi(y) = 0, but for n > 2 this is not the case. Hence the condition that
Bi(y) = 0 is necessary for + to be a cycle in EJ L (d). The following example illustrates
this fact; it is an example in which the chain v satisfies Bp() = 0 but clearly cannot glve
an invariant. We note that our link invariants satisfy essentially the same skein relations as
our knot invariants in Chapter two did; we will prove this later.

Example with Figure 3.10 Let n =2 and consider the chain of chord diagrams:
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We caleulate the boundary of the corresponding cells diagramaticelly, ignoring the FPC
boundary terms. Notice cells from two inadmissible configurations enter this chain with
nonzero coefficients and that cells from related configurations enter with different coeffi-
eients:

O-Q-O-0- O
w( > ﬂ%ﬂgﬁ

it

3
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|
|
|

If we count the chain in the ezemple as o cycle -y, we are claiming the ezistence of a
cyele that would setisfy '

£, S8 ) -2, Gy ) = (-yeven numberz, Q) 20

which 1s elearly not acceptable for a link invariant.

Let - be an honest-to-goodness eycle, We define the actuality table T, associated to
«, exactly as in §2.5. There are two levels of calculation with these invariants. First, given
~, we must fill out 7. Secondly, if -y is not trivial, we can evaluate v on a link. It is
very messy to evaluate the invarisnt on a link, so we'd like to clean up the mess. We
want a reduced actuality table that has only one box for each family of [j]-configurations,
for 1 < j < I. To obtain a reduced actuality table for v € By 5 we must still Al out
the extended actuality table, but then we can construct the reduced tuble easily. We must
first prove that the crossing change formulas and initial conditions used to define both V.
(for links) and Z, (for knotted graphs of n components) only depend on the configuration
families and representative curves. The invarlant is celculated on a link by taking a sum
of certain weights over a series of crossing changes that changes the link to the unlink. We
evaluate on an immersed graph the same way, but the changes turn the graph into a chosen
representative graph from the actuality table.

DEFINITION: Let J be an (4, B,C)-configuration. We call the J-block B oriented if
we have switched the orientations of some collection of BC’s in By so that the ROC's
between any two BC’s in By is +1. Any BC whose orientation remains unchanged is called
representative of the oriented J-block, and any BC whose orientation we change is called
contingent. We will assume that each FPC inherits its orientation from its parent BC, =0
the FPC offspring of contingent BC’s have their orlentations changed, while orientations of
the offspring of representative BC’s remain unchanged. Note that iy of a contingent cell,
after its orientation change, is the negative of h; on that cell before changing orientation.

From now on assume that each J-block is oriented. Let's now define Invariants of finite

type.
DEFINITION: Let

» [J be the unlink of n coroponents,

L7 be any immersion in which the only singularities are j transverse double points,

the triples (L, Lw, L}) and (L‘?;_,L‘i,f.rf'l) denote links and immersions that vary
locally as pictured below:

> > >

J be the [j]-configuration that is res)~= vy both L-i and L7,

J be -~ [f + 1]-configuration that is realized by ',

s and ¢ be the points added to the chord diagram of J to obtain that of J,
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e n(s) and n(t) be the numbers of the points s and t in J,
e e and & be the BC's of J and J, respectively,

e« ¢ be a function on BC’s that is 1 on any representative cell and is -1 on any contingent
cell.

A pair (V, T) of integer valued invariants of n-component links and n-component immersions,
respectively, is an n-component link invariant of finite type if the pair satisfies the following
five axioms: ‘

V1. V() =0,

V2. V(Ly) — V(L) = T(L}) _
T(L4) — T(LL) = e(e)e(gf{~1) MmO HI( LI,

V3. Z(L!) depends only on the actuality index of the family of the BC of the con-
figuration that I{ realizes or, equivalently, Z(L/+™) = 0 where m = 1,

V4. Z(G) = 0 for any immersion G that is a good model for an inadmissable config-
nuration,

and (V,T) has the additional data of an actuality table.

Our main result will show that our invariants are invariants of finite type by construction
and that the value of the invariant is independent of the choice of how the given link or
immersion is taken to the unlink or representative immersion and depends only on the
families of configurations used in the evaluation.

Theorem 3.11 Let n and d be fized positive integers. Let
~ € EzP (@) € Han_1(0r) © Han-1(Q) & Han-1(F4NE)

where N = n(2d+1) and I < L, Then there is a link invariant Vy and an invariant I,
of nice immersions such that the pair (Vy, Zy) 18 a link invariant of finite type of order I.

Proof: Our proof will follow the same outline as the proof of the analogous theorem for
n=:} in Chapter two. We will, however, prove the analog to theorem 2.21 very carefully.

Now, in the top row of our extended actuality table, the coefficients with which each BC
enters 7y are entered as sctuality indices. We have oriented ell of the BC’s of each J-block
%0 that the indices entered for BO's from related configurations are equal. Let’s see how
to enter the actuality indices in the rows of the table below the top row. Let’s assume
that - has survived the spectrsl sequence through r steps and is still nontrivial, so -y has a
descendant that lives as a nonzero element of By .

Abusing notation, we'll refer to the descendant of v as <y also. Let e be any 3N —1
dimensional BC in Q7_, = (Q1-r~1V Z1_,). Recall the following:

o 8,7 subdivides each BC e in Q_r — (Qfp1 W Z1_y) into elementary components.
o Compatible chains of elementary components are those whose boundary inside any e

is exactly the intersection of &,y and e,
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o The main component of e is the elementary component of the eell containing the curve
which represents ¢ in the actuality table To. ‘

Lemma 3.12 Let X, be the set of chains compatible with 8,7y, then X.., is isomorphic
fo Xp_p.

Proof: We must modify our proof of lemnma 2.15 to take into account the fact that we
have changed the orientations of some of the cells in each J-block. The idea is still that the
coefficient with which the principal coraponent of any BC enters £ determines the coeflicients
with which every other elementary component enters £.

Let e be a 3N —1 dimensional BC in @7 = (Qr.r.1UZ1.-)}. Each elementary component
in e is in one-to-one correspondence with the isotopy class of some knotted graph that
respects the configuration J associated with e. Recall that e actually corresponds to the
entire class {J'} J' ~ J}. Let

+ ¢ be a funcetion which takes the value 1 on contingent cells and —1 on dependent cells,
+ ¢ be a chain compatible with 8.,

e« 27 and e; be two elementary components of e that share & common boundary in

&My,
» & be the BC in Qyepq — (Qr—r W Ztpt1), part of whose geometric boundary seperates
g1 and es,

» J be (a representative of) the [I —r + 1], (f —r + 1), or (I -7 1)¢ configuration
{class) corresponding to € and

» o be the index assigned to this elementary component of €, obtainable by nsing V2
and the (I - r -+ 1)% row of the table.

If we jump from e; to €2 across &, then at the point of crossing we pass through a curve
which identifies two points ¢ and s that occur in-J, but not in J. Let n(t) and n(s) be the
numbers of these points in the standard ordering of the points of J. The coefficients with
which e; and eq enter £ differ by

E(E)E(E) (__ 1)1‘1():)-!-71(3)4-(}'“1‘-!-1) a,
so if Ky and K. are two curves in e and vary by a jump through & at K, then the modified
crossing change formula js:
()T (Kp) = Zy(K-)) = e(@) (1) U=riDg (k).

Let T be the map that takes each generator e of Xr., to the chain in Xy, in which the
main component of e has coefficient 1 and all other main components enter with coefficient
zero. Extending this map by linearity gives the required isomorphism. [

We have a strategy to see if 7y survives nontrivially to the next stape and, if it does, fill
out the (I — 7} row of the extended actuality table. An example of this strategy is given
as the first long example in §4.2, The strategy is as follows:
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1. Choose & chain £ compatible with &y, with the property that each main component
enters £ with coefficient zero. ‘

9 The 3N — 2 dimensional best cells generating Yr.., are subdivided into elementary
components in the same way as the cells in Xy, are. This subdivision gives a new cell
decomposition of Qy_r — (Qyr1 U4 [r )

To ealculate the boundary dyy of £ inside 7r — ($37—r—1 U zr.r), we roust calculate the
coefficients with which the main components of the three types of 3N — 2 dimensional cells
of the canonical decomposition enter this boundary, The multiplicities of other elementary
components of these cells in the boundary is determined by the multiplicities with which
corresponding elementary components of 3N — 1 BC’s enter £, i.e. everything depends on
main components,

The main component of any 3N — 2 dimensional FPC is defined to be the component
containing the same curve that vepresents any of its parent cells in the actuality table.
Similiarly, the main component of the BC of an (I — ry*-configuration is defined to be
the one containing the curve representing the assoclated {I - r)-configuration in the table.
It is easy to see that the BC of any {I — r — 1]*-configuration lies in the boundary of a
unique inadmissable [I — r}-configuration. It simplifies matters (but makes no difference
in the end) to choose the main component of the BC of an [I = — 1}*-configuration to
be the component containing the curve which corresponds to the boundary of the curve
representing the corresponding {I - r]-configuration in the table.

Lemma 3.13 If J is an inadmissable {I]-configuration and o € B! ¥ then the BC of J
enters yo with coefficient zero.

Proof: The proof is exactly the same as the proof of Jemma 2,17. 0

Lemma 8.14 Let 1 < r < I —1, let v € E;-"¥ and let £ be a chain compatible with 8-,
then any BC e* from an [I —r = 1]*-configuration enters dey with coefficient zero.

Proof: The proof is exactly the same as that of lemma 2.18 in the general case, and if we
have chosen the main component of e* as suggested above, then since the main component
of every 3N — 1 Aimensional BC enters & with cocfficient zero, the main component of e*
enters dyy with coefficient zero, L)

Lemma 3.15 Let oy and £ be as in the previous lemma, If f is the a 3N — 2 dimensional
FPC, then the main component of f enters dyry with coefficient zero.

Proof: The main components of every 3N — 1 dimensional BC enter ¢ with coefficient zero,
therefore the main cormponents of every 3N — 2 dimensional FPC enter dry with coefficient
zero as well. O

3. Let e be the BC of an {I — r)*-configuration and & be the BC of the associated (I —r)-
configuration. Let ¢; and ez be the BC's of the two [T — r]-configurations whose diagrams
contract to that of e under a single edge contraction. Let C be the main component of e,
and let € and Cy be the elementary components of e; and ey, respectively, that have C
as part of their boundary. The main component of & enters ¢ with coefficient zero, 5o the
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coefficient with which € enters dr~y comes entirely from the multiplicities with which (1 and
C, enter ¢ times the incidence coefficient of ¢ in Hfuur(el) and hy.(e). If we determine
this coefficient for each such e, then we can view dyy as the resulting linear combination of
main components of BC's of (I — r)*-configurations.

4. Tor 7 to survive to the next stage we must show that dry, which is the class of dyy, is zero
in homology. So, we must show that d.7 is the boundary of something. The boundary of £
is By + dyry and B,y is a cycle. This statement is footnoted in 4.5.1 in [V]. If we didn’t have
to worry about Zj.,, then 8»y would certainly be & cycle, but the set Z;_., I8 not. closed
in ;. The good news is that the intersection of the closure of Zr.., is of codimension
bwo in $7mpw1, 50 &7 has no codimension one boundary in £y Since 8,7 is a cycle,
we rmust show that d.y is the boundary of some chain in X7 To do this, we find a chain
ary in Xj_r such that .
Bfer{Qfmp) b doy = 0.

If such a chain can be found, then &r.., = Y(ar.») has the negative of cf,ry as its boundary,
so the existence of such an ., insures the nontrivial survival of v to the next stage.

5. Assuming that cz... can be found, enter the coefficients with which the generating BC's
of X7_, enter ar_, in the appropriate boxes of the [ — rt% row in the extended actuality
table. If v survives all the way to the last stage, then the table is completely filled out.
Suppose that no such &;...» can be found. Then d,~ is not equal to the boundary of snything
and thus its class d,y is not zero in homology. In this case v falls to survive, we cannot fill
in an actulity table for v and we cannot get an invariant from 7.

DEFINITION: Let v € £2I and let Ty be the actuality table for «.

1. Let I be a nice impmersion with I self-intersections that respects an {I]-configuration
J. Let o be the actuality index of J in the table. Then we define

I(L) = .
2 Let L™ be a nice immersion with m > I self-intersections. Then we define
(L™ =0.

3 Let ILI~" be a nice immersion with I — r self-intersections that realizes sn [I — 7)-
configuration J. Let e be the BC corresponding to J and let ¢ be the elementary
component of e that contains £/=". Then we define

(L) =a
where @ is the coefficient with which ¢ enters the chain &r.r.

4. Let L be any n-component link and let U be any link equivalent to the r-component

unlink, We define .
Vy(U) =0

and define V, (L) using the recursion formula

Vol Lg) = Vy(Lo) = To(LL).
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By definition, Z, satisfies V3. By the proof of lemma 3.12, I, satisfies V2. By lemma
3.13 and 3.14, 7 satisfies V4. Finally, V), satisfies V1 and V2 by definition. We still must

prove the following theorem:

Theorem 3.16 Let v € BT C Han-1(Q).

1. If i < I, and J\ and Jy are related (j}-configurations, then the actuality indices of Jy
and Jy in T, are equal.

2. Suppose that I and L are curves realizing J1 and Jo and that L and L} Kave the

same image in R°. Then
T (L3) s To( LE).

8. If L is any n-component link and U is the n-component unlink, then V,(L) is inde-
pendent of the sequence of crossing chunges made to take L to U. Similiarly, if L’
respects a [f]-configuration J end K? is the curve representing J in Ty, then T. (1)
does not depend on the sequence of crossing changes made to take L7 to K7,

Proof: To prove the first statement, suppose that j = I. Let ey and ez be adjacent BC's
from related [I]-configurations J; and Jp, respectively. Let yo refer to the ancestor of 7y in
B S gj enters 7o with coefficient ¢, then ez must enter o with coefficient ¢ as well,
otherwise the 3V — 2 FPC that glues these cells together would appesr in hz(7) with a
nonzero coefficient. Note that, by construction, the issue of whether e; or ez are contingent
doesn’t change this argument.

Assume by induction that the result holds for I, -1,...,7 + 1. Suppose that ¢; and
¢y are the coefficients with which the BC's of J; and Jz enter o, where ¢; 1s as above. We
know that no 3N — 2 dimensional FPC's can have nonzero coefficient in h;{cx;), since none
have nonzero coefficient in dy..;y. By the argument above for § = I, part one follows.

The second statement holds for j = I' by the fact that for any curve L realizing an {/]-
configuration J, the number Z,(L7) only depends on the configuration class of J. By the first
statement of the theorem, all of these equivalence classes receive the same actuality index
and that only depends on the family type of the given configuration. Assume inductively
that the second and third statements hold for 1,7 —1,...,7 -+ 1. We will prove the second
and third statements of the theorem by proving three lemmas

To prove the next three lemmas, let’s make the following assignments: let
» .J; and J; be related [j]-configurations,

» J1 and Jp be related [j + 1]-configurations,

e1 and ez be the BC’s of Jy and Ja, respectively,

g, and & be the BC’s of Jy and Jp, respectively,

K I and K7 be curves lying in elementary components 1.y and e;.- of e;, and varying
by a single passage across Or..je; at a curve K in e,

Li and 17 be curves in ey with the same images as Kﬂr and K7, respectively,



e ez, and ep.. be elementary components of ez containing i, and i, respectively,
e LI+ be a curve In & with the same image as KZ*!,

. R{l and Rg be the curves, with the same image, representing J; and Jo in the actuslity
table,

e t and s be the points added to the chord diagram of Ji, in order to obtain the chord
diagram of Ji,

 for any point ¢ in the chord diagram of any configuration, let n(t) be the number of
that point in the standard ordering of the points of that configuration class. Let’s
assume that n(s) < n(t).

Lemma 3.17 Suppose that the jump between er+ and e1— can be made through either Ki+!
in & or through I4*! in 8. If 7 and o are the points added to the chord diagram of Ji in
order to obtain Ja, then

e(en)e(@)(~)MOFHOHTIHL (KT = e(en)e(Er) (—1)M O HZ(LH
Proof: We know by induction that Z,(KZ1) = I, (L), so we must show that
6(81) (— 1)) = o(@y) (— 1)),

We can reduce to the case where 2; and &, are adjacent. Assume that the chord diagrams
of J1 and J vary in the location of their first points on (§'); and that the first point of
Jy on (§1); corresponds to the second point of J; on (51);. The only way that chords can
be added to the chord diagram of Ji to obtain either J; or J; is when ¢ is the last point
(on the chord diagram) of Jy on (S'); and 7 is the first point of Jz on (S');. We have also
assumed that o on J; corresponds to ¢ on J; and 7 corresponds to 5.

Example with Figure 3.18 An example of the chord diagrams of Ji, Jy, and Ja:

Recall that ROC(&1, &2) is the product of the numbers PP(&1, &), CP(&1, &) and FP(&, &2).
Let’s ¢alculate these three numbers:
PP(81,8) = (=1)ps(J1) — 1 = (=197 = (),

If s and o are not on (81);, then n(s) = n(r), and none of the 3-forrns, that wedge together
to become wy,, need to have their polarities changed in the transition to wy,. It foltows
that CP=FP because FP is simply the product of CP times (-1) raised to the number of
polarity switches. Therefore

= ROC(&;, &) = ¢(€1)c(E2)
= 5(51)5(52)(“1)n(t)+n('r)-}an(a)+n(g) = 1

which gives the desired result. (1,
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Lemma 3.19 Suppose that the jump between eay and €~ can be made across the curve
LitY of &3, If 7 and o are the points added to the chord diagram of Jy in order to obtain

the chord diagram of Ja, then
e(el)E(él)(Wl)n(t)-m(ﬁ)-l-j-bII’Y(Ki-H) - 6(62)6(63)(--1)“(7)‘*“(”)""-”’11}7(Lf";‘*“l)_
Proof: As sbove, Z,(Ki+1) = Z,(L{+) by induction and we can reduce to the case where

ey and eo are adjacent. Assume that the first point of J1 on (51); corresponds to the second
point of Jp on (51);. There are four possibilities.

First, suppose that neither £ nor s lie on (§ 1y;. Then n(t) + n(s) = n{r) + n(c). Let’s
enlenlate ROC(ey, ez) and ROC(E;, &2):
PP(cy, e2) = (— 1) = (=11 = PP(gy, &),

We know that
CP(e1,e2)FP (e, e2) = (—1)°

where x is the number of 3-forms that change polarity in the transition from ey to es. This
number doesn’t depend on the added chords (s,t) and (,0) at all, so

CP(ey, e2)FP(e1, 62) CP(E1, 82)FP (8, 8) = 1
= ROC(e1,ez) = ROC(£y, &z)
= €(61)6(62)e(i‘h)ﬁ(éz)(“1)"(':)"'"(3)'*“(”“(”) =1

which gives the result.

Secondly, suppose that s € (S1); and £ & (5")i. Then we bave n{t) = n(T), n(s) =
n{c)+ 1 and |
PP(e1, e2) = (~D)p(Nh) = 1 = (=1)pi(J1) = —PP(&1, &2).

Now, if s is not the last point of Jy on (S');, then there is no change in polarity of the
3-form d(t — s), when it tranforms to d(r — o). Therefore
CP(G],, 62)FP(E‘-1, 62) = Op(ﬁl, éz)FP(El,ég)
= ROC(e;, e2)ROC(Ey, &) (—1)etnlern{niine) —

which is what we want. If s were the last point of J; on (S%);, then Jy and J; are from the

same equivalence class of configurations, That possibility was covered in the last lernma.

The third possibility, where ¢ & (S'); snd s & (§%);, Is handled in the same way as the
second case.

Finally, suppose that s and ¢ are both on (S1);. If ¢ were a last point on {S1), then Jy
and J» would be of the same configuration class. Assume that ¢ is not a last point of Ji on
(§1);, then (—1)P04n(8) = (~1y"H™), n(e) < n(r) and there is no polarity change in
the transition from d(t — 8) to d(r — o). It follows that

CP(e1, e2)FP(e1, e2) = CP(&y, 82)FP(81, &2)

which gives the result as above. O



Lemma 8.20 Let K7 be any curve in ¢y and let L be any link.

1. Let Py and Py be two paths in ey from K 7 to R{ , and in general posttion relative to
i1, Then 1‘,*(}'{?) can be calculated along either path and is independent of which

path is chosen.

2. Let @ and Qq be two paths from L to the unlink that are in general position relative
to B1. Then V(L) can be colculated along either path and is independent of which

path is chosen.

Proof: The statement is equivalent to showing that the contribution of any closed loop to
the index is zero.

Suppose that € = ex, &, &, J = J1, J1 and Ja are all given as above, except that J;
and J» are now taken to be nonrelated. Let K., K-, K—— and K. be curves in e such

that:

e K.y and K,_ vary by a crossing change through a curve K.,z in &,
" e K. and K__ vary by a crossing change through a curve K. in &,
e K__ and K_, vary by a crossing change through a curve K..p in &,

K_, and K. vary by a crossing change through a curve K. in &3,

K, and K., vary by a crossing change through the curve Ky, in the BC £ of a
[§ + 2}-configuration .7, and K, and K., vary by a crossing change through K, as
well.

Let T and o be the points added to the chord diagram of J to obtain J2. The points
and o can also be added to the disgram of Ji to get that of 7. Recall that £ and s are the
points added to the chord diagram of J to get J1 and they can also be added to the chord
diagram of J; to obtain that of 7.

Let n1(t) refer to the number of the point ¢ in the standard ordering of the points of Ji,
and similiarly for n1(s). Let n; be the assignment of numbers to points in J; and let A be
the assignment of numbers to points in J. Let’s assume that ni(s) < n1(t), na(r) < nafe),
N(s) < N(t) and N{o) < N(7). :

We can reduce to the case where the closed loop goes from K44 through Ky to K-,
through K,_ to K_.., through K_; to K..,. and finally through K, to K,.;.. To complete

the proof we need to examine the ¢rossing change formulas:

Ty(Kps) = Ty(Kin)+ele)e(@)(~1)m Ol (g, )
= T,(K_.)+e(e)e(dr)(~1ytmOHIIT (K, )

+ e(e)E(éz)(_1)7“2(7')7‘2{0)+j+1‘1'7( Kz.)

LK) + e(e)e(@r) (1) Iy, () o)

o E(G)E(Ez)(—1)”‘2(THMW)'HHIT(K“,M)

+ e{e)e(E) (—1)™ (*)+n1(ﬂ)+.7‘+II’Y(K_z)

Lo (Kyy) -+ e(e)e(@r) (—1) 2t g )

E
It
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+ e(e)e(Eg)(~1)™ MO (K1)
~ e(c)e(@r) (1) BTN (K, )
— e(e)e(ag) (1) THMAITINLL (K ).

We must show that the sum of these last four terms Is zero and that this sum equals

e(e)e(@ ) (—1)m it (g (K ) — T (K _a))
+ e(e)e(@s) (— 1y A POHT YT (K, ) = Ty (Kiest )
= e(e)e(@r) (=) O (¢(gy)e(@) (- N NI, (K, )
+ e(e)e(Ea) (— 1yl (¢(Ey)e () (1NN IR, (Koy));

thus it is sufficient to show that
(ml)nx(t)vHu(SHN (rMN(a) _ (_l)ﬂa(r)+m(a)-l*N (B)+N(s)

I N{(s) < N(t) < N(o) < N(7), then ni(s) = N(s), m(t) = N(t), ng(o) < N(o) —2, and
na{7) < N(r) — 2. It follows that
(Ml)m(t)wx ()N {r)+N (o) (- 1)N(t)+N (8N (TN (7)) (_1)112(T)+ﬂ2(d)-bN(t)+N(a).

EN(8) < N(o) < N(t) < N(7), thenny(s) = N(s), ne(0) < M{o)—1, m(t) < N(t)—1
and na(r) < M(r) — 2. The result follows as above.

Finally, if N(8) < N(o) < N(r) < N(t), then ny(s) = N(s), nz(o) < N(o) =1,
na(7) < N'(7) and n(t) = N (t)—2. The result follows as above, Since Ji and Jp are chosen
arbitrarily, all the other cases are contained in these. "This proves that the contribution of a
closed loop on a crossing change path is zero. The same proof works in the case where K.,
K.y, K_.. and K. are all links, j = 0 and e is all of I, and V. replaces all occurences

of I, when evaluation is taken on Ky, Koy, K..orK,.. 0

We have shown that corresponding elementary components in BC’s of related configu-
rations satisfy the same skein relations and the same normalizations; therefore they must
receive the same index. We have also shown that the index of an elementary component
can be determined by any possible path to the principal component of the given cell. We
conclude that Z,(L7) is independent of the unlinking path taken from L7 to the represen-
tative curve K7 and only depends on the family type of the dirgrams. We have also shown
that V,(L) is independent of the unlinking path taken from L to the unlink. As a result
we can construct a reduced actuality table and obtain an invariant of finite type of order I.
This concludes the proof of theorem 3.16. O

‘We have also now proved theorem 3.11.

What about d? Recall that d is the degree of the Fourier polynomials that constitute
the coordinate functions of p & I'4. Recall that all of our work has been for a fixed I'?. Thus
we have implicitly worked with a family of spectral sequences ET"(d} indexed by d. We
will show that B (d) does not depend on d, as long as I £ ¥4, where n is the number
of components of the links in question and N = n(2d 4 1). The result is that, as long as
d > HEEL 1o start with, cycles of EB;f J(d) stabilize when d — co. By Alexander Duality,
these cycles are dual to cocycles in

iMoo (D — £)
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and are link invariants, by the process we described in §2.4 and earlier in this section,

Theorem 3.21 Fiz an integer d and let N = n(2d +1). Then E}Y(d) = 0 when
A)ptg<b,

B)pz1lwhenn=1,andp=0 fornz2,

C)p < ~3N.

Proof: Let J be an (A, B, C)-configuration of complexity [ = —p. By theorem 3.4, no cells
from complicated configurations enter any cycles in Hy (S —{p—1) with nonzero coeflicient,
as long as k = 3N — 2, so assume that J is noncomplicated.

1. Suppose that I < 2%tk We have seen that no BC’s from noncomplicated configura-
tions have dimension greater than 3N — 1, 25 long as p < &t

2. Suppose 3tL < 1 < N, and let
Ay s= {J| I~ J and M(T?% J') has codimension 3/ —¢,¢ 2 1}.

By lemma 1.68, A, has codimension $(3N — 31 -+t +1) inside {J'| J' ~ J}, which has
dimension < 2I. If J is noncomplicated, then

Ujre g, M4 T) % 85

has dimension no greater than 3N -1 —£(3N —31+t+1)-+t = 3N 14241t (3N 31},
which is strictly less than 3N,

3. Suppose N < p £ 3N. Let
By = {J'| J' ~ J and M(T%,J") has dimension s = 0},

By lemma 1.6C,
9 e B‘M(I‘d, JY) %87

has dimension no greater than
8T —1+8—(s+1)(3] =8N +8) =3N =1 — 5%+ 5 — 5(3] —3N)
which is strictly less than 3N. By definition

B o Han v r—g(S2 — 1)

We conclude that the statement of part A holds.

By definition £§¢ = 0 if p is positive. If n = 1, then By =0and By =0forq> 1.
This proves part B.

Part C follows from the last semtence in lemma 1.6C, which says that
M(T4 J) =@ if I >3N. O

As 4 corollary we get our second main result, which is a stablization result for cycles in
E-1I(d) for a suitable range of values for /. This range is exactly the range for J that has
given us theorems 2.6 and 3.6.

e |
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Theorem 8.22 Let d be o positive integer and let I < ¥, N = n(2d + 1) and d > d,
Then _

Er(d) = By ()
for = 0,1,2,3,...,00 Moreover, if 7 € Eghi(d) corresponds, via this isomorphism, to
~ & BEzli(d), then for each link L and each nice immersion L7 in 14 ¢ T? we have

Vy(L) = Vy(I)

and . ‘
IH(L) = Ty (L7).

Proof: The cell complex map taking each BC in By’ L (d) to its counterpart in EE'I " (€}
gives the result for r = 0. Both EPa(d) and F29(d) are zexo  p+ g < 0, s0 no nontrivial
differential maps into either Er?(d) or EyHY(d); thus the process of calculating these
groups, as given in detail, does not depend on d or d>d. O

We define o Vassiliev link invariant of order I'to be a cycle in Hay_1(021(d)), where d is
sufficiently large and where evaluation on a link uses the table 77, as was described in §2.4.
By construction it Is a link invariant of n-component Hnks of finite type and has order I.
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4 Facets of the Invariants; Examples and Theorems

4.1 Introduction

In this chapter we begin, in 4.2, by presenting a potpourri of observations that concern
the caleulations involved in setting up an actuality table. Some of these observations lead
to some interesting conclusions regarding invariants of link homotopy. In 4.3 we present
several examples in depth. Our first example, in the case n = 1, i3 the simplest example
that shows how to fill in the actuality indices in the rows of the actuality table that are
below the top row. Qur exposition covers the process of entering the actuality indices in the
actuality table. We will also show examples of how the actuality tables are used. We end
the section by presenting, diagramatically, a cycle in E3® for two component links that
distinguishes the Whitehead link for the unlink and we give that caleulation. Section 4.4
is devoted to presenting a generalization of Birman-Lin’s result, theorem 4.1 in [BL}, that
establishes a connection between link invariants of finite type and a family of polynomial
invariants.

4.2 Some Observations

First, let’s investigate some of the different kinds of Vassiliev style invariants of links, Un-
less we state otherwise, let’s assume that the integer n, which determines the number of
components in the links under consideration, is fixed and n > 1.

DEFINITION: Let «y be a nonzero cycle in £/ and let 7 be the actuality table for
4. If there is some subcollection (S1)i,, (SYig, - -+, (81)i, of k < n circles in [] 8* such that
nonzero actuality indices only appear in boxes in Ty that correspond to chord diagams that
have chord pattern connecting these k circles, then we call -y a k-connected Vassiliey link

invariant.

Obvious observation: if +* is an invariant of k-component links and k < 7, then we can
apply 7" to some k components of any n-component link. Every k-connected invariant
obtained by our process arises in this way and each invariant of k-component links gives
one k-connected invariant of n-component links for each choice of k circles out of . Without
loss of generality, suppose that 4* is a k-connected invariant of the first k components of
n-component links. Then, when we evaluate V.x on a link, we are allowing any crossing
changes involving images of (81);, k < 7 < n, to be made free of charge. Thus the evaluation
only measures, up to the stength of V., the degree to which the first k components of &
given link are linked to each other and knotted to themselves.

Now let’s investigate link invariants that are invariants of link homotopy. Recall that an
invariant of link homotopy is any invariant of links which does not detect the knotting of
any component of a link with itself. The simplest example of an invariant of link homotopy
is the classical linking number between two components of some n-component link, In some
sense the flavor of these invariants is similiar to k-connected ones, because when evaluating
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an invariant of link homotopy on a link, we get to change any erossing of any cotnponent
of the link with itself free of charge. We should mention that Bar-Natan, in [B2], and Lin,
in [L], have proved independently that Milnor's i invariants are invarianis of finite type.
Milnor’s invariants are invariants of link homotopy that can be applied to string links. An
n~component string link is a smooth embedding

il .
J:Hi=1fi—rﬂ>‘(r,
where [ and I;, 1 < 1 < n, denote the unit interval [0, 1], where D) is the unit disk and where
olr(e) =pixe
for e = 0,1 and {p;}i-., is a fixed choice of n points in D.

Suppose that one of our link invariants - has the property that the boxes of its reduced
actuality table are assigned nonzero indices only when the associated [f]-configurations have
empty A-configurations. It is easy to see that + is an invariant of link homotopy. We will
present examples of several such invariants in 4.3.

Vassiliev invariants of link homotopy have » natural division into two classes of invari-
ants, Let’s see how this occurs. Recall that X is the free abelian group generated by all
of the BC's from (1], (I} 4 and {I)~ configurations, and recall that Y7 is the free abelian
group generated by the BC’s of all of the [T — 1]*, {I})} and (I)5 configurations, as well
as the FPC’s from generators of X;. By definition Y7 is equal to the cellular chain group

Can—o(S ~ (U U Zn). If
7t Cay—2(Qr — Qr-1) — Can—a(r — (211 U Z1))
is projection, recall that hy : Xy — Y7 is defined to be the composition « o dy. Let

» X711 be the free subgroup of X generated by the BC’s from [I]-configurations that
have nonempty A-configurations,

» Xr2 be the free subgroup of X generated by all the BC's in X7 from (1), and (I},
configurations, and

» X3 be the free subgroup of Xr generated by the BC’s of [I]-configurations that have
empty A-configurations.

The following lemtny is the generalization of letnma 3.3 in {BL1] and will help us to char-
acterize link homotopy invariants. We can also nxplolt the lemma to help us understand

some of the combinatorial structure of eycles in By
Lemma 4.1 The restrictions hy|x,;, and hrlx,, are one-to-one.

Proof: We will prove the first statement first. Let 1, ez,..., e» be & subset of the generating
BC's of X1y and let Jy,J%,...,J» be the corresponding [I]-configurations. Suppose that
e1,..., ¢ are nonzero integers such that A7 (¥, cig;) = 0. Recall that if 5 and ¢ are points
of some {I]-configuration and (s,) form one of the groupings of cardinality two, then n(s)
and n(t) refer to the numbers, in the ordering of the points of the configuration, of s and
t. Define the length of the chord corresponding to the grouping (s,1) to be |n(t) — n{s)h
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For each i, 1 £ 1 < r, we define the length fle;]] to be the minimum of all of the lengths of
the chords of J;. We know, by lemma 3.13, that no BC’s from inadmissable configurations
can be among the e:’s, thus the length of each e; is at least two. Assume that the B(’s are

ordered such that
lealt < Heall =+ -+ = fexll.

Now, for each 1, order the chord pairs
(SI:tl): (32:1:2): ven 3(Sfrt1)
of J; such that n(sz) < n(tx), 1 £ k < I, and such that n(s;) < n(s2) < --- < n(sy).

Define f(i,7) to be the BC in ¥ corresponding to the {I)} or (/)% configuration whose
chord diagram is obtained from that of e; by contracting the edge between the points
numbered j and § + 1.

Example with Figure 4.2 n =2. On the left is the diagram for o given ¢, of complexity
I = 4. In the middle and on the right are diagrams for f(1,2) and f(1,7).

By definition, hy(e) = 3 e¢(~1)2*?f(i, b — 1), where the sum Is taken over all legally
contractible edges and the numbers ¢, ¢, o and b are as in section 2.3. It follows that

hi(3 ) eies) = 3 ey e¢(~1)***f (i, b~ 1) = 0.

Obviously, if k # 7, then f(i,k) cannot cancel f(7,7). This is because the two disgrams
cannot be the same. In the diagram for f(i, 7), the only point that connects to two chords
is the point with number §, while in f(4, k) it is the point with the number k. For example,
in our last example f(1,2) could not cancel f(1,7). So, there must be integers p, ¢ and r
such that e, # e, but f(p, q) = f(r, q). It is easy to see that the chord diagrams of e, and
e Tust be identical except for a transposition of the two points which bound the ¢™ edge
to be contracted.

Example with Figure 4.3 Pictured, left to right, are the chord diagrams for an example

of the triple es, f(p,q) = f(r,q) and e,.. Notice that the numbers of both of the points

bounding the edge to be contracted in e, are the same as the correspending numbers for e...

In this evample, the pair of points bounding the contracting edge hove numbers 3 and 4.
The number of the edge, which 1s q, is 3.

Suppose that |ley}] = m and let (s1,2)) be the pair in J; whose chord is of length m.
Suppose that (o, 7) are & pair of points such that n(s} < n{e) = a(t) — 1 < n(t) < n(r).



Then the edge between o and ¢ contracts to form the chord diagram for f(1,n(s)), which
equals f(r,n(e)) for some r. However, the chord diagram for e, is obtained from that of &;
by switching the points ¢ and o thus ||e-]| = m — 1, which is a contradiction. Now, suppose
that (g, 7) is & pair of points such that n{e) < n(s) < n(r) = n(t) -~ 1. Then the same
thing happens with some e,, where f(1,n(7)) = f(r,n{r)). If there is a pair (a,7) such
that n(s) < n(o) < n(r) < n(t), then |n{r) — n(s)| < m, which is again a contradiction.
We know that m > 1 since J; Is admissable, so there must be some pair of points (o, 7)
satisfying one of the above three possibilities. This shows that no length is possible for e,
and proves the firgt part of the lemma.

Example with Figure 4.4 Pictured below are segments of diagrams illustrating the case
where n{o) = n(t) — 1. On the right is the segment for e1, in the middle the segment for
FLn(e)) = flr,n{o))} and on the left the segment for e,.

o”w.f't

To see that hr|x,, is one-to-one, we observe that each BC ¢ of an (I} or (I} configu-
ration lies in the image under hr|x,, of the unique BC & from an (I} ; or (I}~ configuration,
where the chord diagram of & can be obtained from that of e by simply adding the missing
chord to the two chords that connect the three points of the grouping of cardinality three.
This concludes the proof of the lemma. O

Example with Figure 4.5 The chord diegram for e is pictured on the left. The diagram
on the right, obtained by adding the missing chord in the grouping of three points, corre-
sponds to the only BC & that lies in the hy|x,, pre-image of e.

D O
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It is easy to find examples of chains in X753 that go to zero under hy.

Example with Figure 4.6 In this example n = 2. Using diagrams, we have evaluated
he of the BC"s of the only two generators of Xp3. The two configurations are reloted and,
normally, we would reorient one of the corresponding BC's, since the ROC of these two
cells is —1, but we have not done that here. Reeoll that when o diagram is to stand for an
FPC, we have put an f (to stand for fized) next to whichever first point that has been fized
at zere.

\'\1 ! } - 1 ) +
§
+ +
1 [ i
§
+ E
t ]
' 1
hz = - J
] ’ '
! 4 i
+ +
f
£
4 +
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The lemma leads to the following observation about link homotopy invariants:

Proposition 4.7 For each n = 3 and each I > 2, there are two classes of link homotopy
invariants of order 1. One class consists of all invariants of link homotopy in which the
actuality indices of all (I),-configurations in the extended actuality toble are zero. The
other class consists of those invariants in which at least one (I} ~-configuration has nonzero
index in the table.

Remark: Of course, if / = 1, there is only the first type. If n = 2 there is only the first
type, as any noncomplicated configuration with a grouping of three points must be an
(I) g-configuration.

Proot: By the lemma, one elass consists of cycles arising from chains in Xya; the other class
consists of all chains that have nonzero summands from X, O

We will show that for any link homotopy invariant V., of order I for n = 2, there is a pair
of polynomials pf and p7 such that the value of the invariant V,(L) is given by pd(€(L))
if £(L) = 0 and is given by pZ (4(L)) if £(L) < 0, where £(L) is the linking number of any
two component link L. This is not surprising, since linking number is & complete invariant
of two component links up to link homotopy. T suspect that, for all 7, the first class of link
homotopy invariants always arises from linking number, but I have not been able to prove

it,

The lemma leads to another ohservation:

Proposition 4.8 Suppose that I = n and let v € E{I 1 be an n-connected cycle that is not
a link homotopy invariant. Then for everyi, 1 i <n, and everym, n—2<m<1T~1,
there is & BC, entering -y with nonzero coefficient, whose chord diagram is n-connected and
eontains I —m chords that connect to (SY);.

Proof: This observation can be shown entirely diagramatically.

Pictured are five segments of chord diagrams, all of which stand for diagrams of BC’s
that enter - with nonzero coefficient. In each figure, the vertical line sepments represent
segments of copies of §! and the diagonal lines represent chords. If two vertical line segments
are not connected, then they are not to be part of the same circle. From figure to figure we
will assurne that corresponding vertical line segments represent fixed circles. For example,
the unbroken vertical line segment that goes through the middle of each figure is to represent
a segment of (S');, the same fixed 4, in each of the figures. Descriptions of the five figures,
top to bottomn, now follow:

Figure 4.9 The first figure is part of the diagram of an [I)-configuration J,, which has
m > 1 chords connecting to (S')i. Let e) be the corresponding BC. Since we have assumed
n-connectedness, there is at least one chord e connecting (S'); to enother cirele. Let’s
assume Lhat ¢y is the chord which connects the middle vertical line segment to the one on
the right, which is a segment of some (SV);, 7 # 4. Let ¢y be the chord connecting to {S1);
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directly below the endpoint of ¢1.

€y

BN\

HA

Figure 4.10 The second figure is the diagram of the (I)g-configuration Ja obtained by
contracting the edge on (S); between ¢, and c2. Let ey be the corresponding BC. By the
lemna, the contribution of ey in hy(e1) must be cancelled by the contribution of ey in hi(es),
where e3 i the BC of the (I)-configuration Ju that lies in the pre-image (hrlxp,) " ea)-

A\

Figure 4.11 The third figure is of the diagram for J3, the configuration corresponding to
es. Let e be the chord that is added to the diagram of J» to get that of Js.

Y

L)
La [

Figure 4.12 Figure four is the diagram of an (I}, -configuration Jy. If eq is the BC of
this configuration, then eq is one of the other two BC's that lies in the hy image of ea. The
three point groupings of Ju, Ja and Jy are oll the same, but the diegrams for J2 and Jy ere




|

missing chords c3 and ¢y, respectively. The diagram for Jy has all three chords.

-
=

&n
i)

Figure 4.18 The last figure iz of the chord diagram for Js, the configuration corresponding
to es. The diagram has an edge that contracts to give the diagram for e4.

-
-

L

e

We claim that iterating the process of passing from Jy to Jy results in lowering the .
mumber of chords that have endpoints on (8%);. If ¢z is a chord that has only one endpoint
on {5*), then there must be a BC e5, with nonzero coefficient in -y, that has fewer than m
chords on (5%);. If ¢p is a chord that terminates at both ends on (§1);, then the dlagram
for es has one less internal chord on (S1); than the diagram for e1 does. If we iterate this
process, then eventually we must obtain the situation where the diagram for e; has no
internal chords connecting to {(S');, and then the resulting diagram for e; will have fewer
than m chords connecting to (S*);. Obviously, this process works in reverse to show that
there are diagrams with as many as I —n + 2 chords connecting to (§1);. 0

4.3 Examples

In this section we will explore several examples of actuality tables and will gee both how to
complete them and how to use them. Let’s start with an example in the case n = 1. Thig
example is the simplest example that shows the complexity of filling out the lower rows of
the table, but it is small enough to be able to be presented in full detail. Next, we will
present several examples of actuality tables for link homotopy invariants of two component
links, and derive formulas for evaluating these invariants on link homotopy classes of two
component links. Finally, we give an example of a cycle in Ey " that illustrates the last
obgervation of section 4.2, as well as being able to distinguish the Whitehead link from the
unlink.
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The first example 1s the construction of the actuality table for the only order three
invariant of knots. Here’s the plan: first, we will simply present the actuality table, complete
with all actuality indices entered, representative curves for all but the top row. We need
to say that, because of considerations of space, top row means all of the boxes containing
chord diagrams that correspond to configurations of complexity equal to the order of the
invariant. The second row means all of the boxes containing chord disgrams of complexity
one less than the order of the invariant and so forth. Recall that if K7 is a curve realizing
a configuration of complexity [, then Z, (K 7y only depends on the configuration, so we do
not need to assign curves to boxes in the top row of the table. Next, we will show how
we arrived at these indices and, finally, we will evaluate the invariant on the left and right

trefoils.
Figure 4.14 Let v & BT, Here is the extended actuality table for ~v. In order to be

complete, we have ineluded bozes for ell configurations, even if we know that they must
hove actuslity index zero. For example, any inadmissable {3}-configuration must receive

index zero by lemma 2.14.



D]O]o[o]e]
0000
B 66|00
EIFIEIEE)
SIEIEIEE




Figure 4.15 Lel’s now use the diagrams to calculate by of all of the BC’s of order three
that do not automatically receive index zero:

BB AR ER®
w DB DD-OD
00T
-BOOEBOSGD
Valalolaraia
Natatalglada
Nala Sl akay
-BBSOTD
Vava el @ialh

N
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Figure 4.16 We can see from the colculations above that the chain <y, defined below, is a
cycle. In foct, By %3 has only one generator. Recall that any cycle in E}{"I o gives a candidale
table. If it survives nontrivially to EZ/, then we get o full table.

TN TN 2T '
DHESDBREE
NS NN , ‘
TAYIIAY

The coefficients, that precede the diagrams in the above expression, are entered as
actuality indices in the appropriate boxes in the top row (in our case: the top five rows) of
the extended actuality table. Zeroes are entered as indices in the box of any diagram that
does not contribute to +. Now comes the sticky part. Following our discussion in sections
2.6 and 3.4, we must fill in the next two rows of the table.

Figure 4.17 Let Ji, J2, Js and Jy be the complexity two configurations and let ey, ez, éa
and eq be the corresponding BC's, respectively, of the following four diagrams Dy, Dy, Ds,
and Iy

DOO

Figure 4.18 Let Ly, Ly and L3 refer to the curves representing Jy, Jo and both J3 and Js,
respectively, in the table. Ly, Ly and Ly are shown below.

Sl

Figure 4,19 Let Ju, Jio and Jys be the (only) three (2) 4-configurations that lic in the
image under hy of Jy. Let ey, exz and ey3 be their BC's. Their diagrams Dyi, Dip and
Iha are pietured below.

e
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Recall that a main component of e; is the elementary component of the cell that contains
the representative curve L;. Similiarly, the main component of ey; is defined to be the ele-
mentary component of ei; containing the curve L. If we jump through X3 to a nelghboring
elementary component, we obtain some other curve 1.

Example with Figure 4.20 Shown below are Ly, the curve I € I3 through which we
Jump, and L.

AR

To fill in the complexity two row, we must caleulate the coefficients with which ey;, ez
and €13 enter a certain chain £. This chain £ is chosen to be compatible with &y and is
chosen so that the main component of each cell enters it with coefficient zero {see sections
2.6 and 3.4). '

The diagram Dy; of ey spreads or resolves into the diagrams I’z and Dj3. The cells ep
and ey are the he|x,; preimage of ;; and, diagramatically, this process is realized by taking
the point that is on Dy and is connected to two chords and spreading this point into two
points, each connected to a single chord. There are two ways of doing this and Ds and Ds
are the resulting diagrams.

Figure 4.21 Dy, Dy and Ds are shoun below.

The resolution of Dy above corresponds to a resolution of the curve L) into new curves
Ky and K3 realizing Jo and Js, respectively.

Figure 4.22 In the illustrations of Ly, Ky end K below, we have tried to be consistent
with our choice of placement of the orientation arrows to clarify the process.

& 8 o

Qur assumption that the main component of each cell enters £ with coefficient zero is
the same as saying that the index I, of the representative curves are zero, We can use
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the crossing change formulas to calculate all of the other indices. The curves K3 and I3
are equal up to isotopy, and we know that since the configuration J; is inadmissable it will
recetve actuality index zero. In any case Z,(K3) = 0. Let’s calculate Zy(K?).

Figure 4.23 We calculate Z,{Ky) using knot diagrams end the crossing chenge formulas.

I'r = IT@*-("')HMBI,Y(@ =7

The incidence coefficient of ey in both ha(es) and ha(es) is 1, so e1; enters d)y with
coeflicient 1(0 + 2) = 2. Now let’s do the same for )z and e13. The diagram Dj2 for €1z
resolves into the the diagrams Do and Dy, which correspond to the BC's eg and g4 that
make up k3 !x,, (e12). The curve Ly resolves into curves K} and K. The resolution process
on L; can be viewed as the resolution on the diagram e; (i.e. on D) restricted to the main
component of e;.

Figure 4.24 D)y, Dy and Dy:

OO

Figure 4.25 Ly, K} and K}:

A &

As before, K is isotopic to L, and thus Z,(K}) = 0. We also observe that X} and Ly are
isotopic, so we know that Zy(K3) == 2. The incidence coeflicient of €1z in ha(eg) and ha(ed)
is —1. T'he required coefficient is therefore —1{0 + 2) == —2.

Finally, D13 resolves into [, and Dj, since by | Xg}(ﬁlﬂ) = {ez,es}. The corresponding
resolution of curves spreads L; into curves K¥ and K realizing Jo and J3, respectively.

Figure 4.26 Ihz, 19 and Ds:
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Figure 4.27 L1, K and kY-

As above, K¥ and L are isotopic and therefore Z,(K}') = 0. We also have that KY
isotopic to both B.'g and Kp; thus I.,,(Kz y=2and ez entera £ with coefficient 1{(0+2) = 2
The result is that diy = 2(e11 — €12 -+ e13). Now it remains to find a cham a & Xz such

that koo -+ diy = 0. Let a = ez — e1; then
ha(ey ~ e1) = —ey1 + €12 ~ €13 — €1y -+ €12 — €13 = dry.

Notice that because there is only one BC in each of By, and By, there is only one FPC in
each J-block and it cancels itself out in hg(e1) and ha(ep). We can now enter 1 and —1 into
the extended actuality table as the indices for Jy and Ji, respectively.

The configuration in the only box in the bottom row of the table is inadmissable, and
50 we can enter zero as its actuality index. We can now shift to the reduced actuality table,
where there is only one box for each family of [I]-configurations, 1 < I £ 3, We will also
delete any boxes that have actuality index zero. Recall that our skein relation, in the case
of knots, takes the form.:

Iy(K.j,.) —I,Y(Kf_) — (1RO, (il

where Kj and K7 both respect some [j]-configuration J and vary by a jump across Tj4
at the curve K§~*. Let J refer to the [j + 1]-configuration that K™ respects. ¢ and s are
then the pair of points added to J to obtain J and n(t) and n(s) are the numbers of these
points in J. In this table we have indicated the value of the power of —1 that occurs on the
right side of the skein equation. We have shown this coefficient ss an arrow, and with it a.
number, between the two boxes of the table that are involved in the skein relation.

Figure 4.28 Here is the reduced actuality table for «y:

&

L
I T = B
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Example with Pigure 4.20 This is an ezample of curves K2 and K? that respect the
only admissable [2]-configuration J. The two curves vary by passage through a curve that
respects the [3]-configuration J occupying the upper right hand box in the reduced table. By
lemma 3.17, there is a choice of the power of —1 used in the skein equation, but this choice
doesn’t matter. The choice is @ choice over where in Ta to make the jump from K3 to K2,
We have chosen here to use the same coefficient that we hove used as the arrow in our table.

T @ - T, @) = (-J)WI,Y@) - T,&=2

72



Example with Figure 4.80 This s o paper on knot theory, so I am obliged to yse our
reduced table to eveluate the invariant V, on the left and right trefoils. Recall that if ¥ is

a knot that is isofopic to the unknot, then I,(K) = 0.

Y
PR Ly —

1, + (=1) 1

= TD-cI""T @®=1+2-3

I
[

D =V A +en™ T

I 4 M’)zw;z:: — ,

|

73



Our next examples are of Vassiliev link homotopy invariants of two component links. We
will, therefore, only be considering [/]-configurations that have an empty A-configuration.
The corresponding best cells are the generators of Xs. It is easy to see that the single
[1)-configuration whose BC is in Xy is itself & cycle, since it has no boundary. Let’s call
this configuration Ji, its BC e1, and the corresponding chord diagram D;.

Figure 4.31 The diagram Dy:

It is easy to see that the corresponding invariant, where e; is taken as the cycle, gives
the linking number.

Figure 4.32 This is the corresponding reduced actuality table:

7]

Example with Figure 4.33 Some sample calculations:

4 D=4+ OO =

_.V,YIOO:VY@ - T OO=-
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Let’s consider three reduced actuality tables, all of invariants of link homotopy, The
first two tables Ty and T3 both correspond to the same cycle v € E} 2'2, but differ by the
choice of compatible chaln uged to fill out the bottom row. The lagt table 7% is from a cycle
in Boh8,

Figure 4.34 Ty and Ts are pictured side by side; Ty i3 below:

iRy oKy

i | |
OO (D OO ()
o} 1]

...:....,l T"I

S

[oYellG:

Let’s examine T; and T3 first. There are no (1),-configurations, thus diy = 0. But, for
both @ = ¢; and & = 0, we have diy+ hio = 0 and so either choice of & gives an acceptable
choice of actuality table. Actually, we have the same cholce in T3 in both of the bottom two
rows. Let Jy and Ja; be the two related [2]-configurations with empty A-configurations
and let ex; and egz be their BO's. Let eza and ez be the BC's whose halx,, preimage is
{e21, ez}, Let Jaa and Jog be the (2)-configurations corresponding to ez and egq.




Figure 4.35 The chord diagrams for ez, eas, €23 and eaq:

RO CRO OO

Let £ be the cyele in L‘l_ 3 {hat determines (the top row of) 73. We can choose repre-
sentative curves for Joa and Jag so that die = 0 and the same choices will result,

Figure 4.36 These are representative curves for Joz and Joq that will make dye = 0

(0 k)

For each positive integer k, let Ly, refer to the two component link (diagram) that has 2k
positively signed crossings between its two components and no other crossings. Let L_j, be
the two component link that has 2k negative crossings between its two strands and no other
knotting or linking. Considered up to Hnk homotopy, the set {..., L_y, Ly, Ly, La,...} is
the entire collection of links of two components. For each integer ¢, 1 < ¢ < 2k, let L} refer
to the linked graph of an immersion with 2k — ¢t positive crossings and ¢ self-intersections.

Define L? ;, similiarly. -
Example with Figure 4.37 Pictured are L_y, Lo and L&:

a

Let’s use 7 and evaluate the assoctated invariant V on Ly, Ly and Lj;

V(L) = VY(Lo)+T,(L})
= {}

il
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V(La) = V(L1)+Zy(L3)
= Iy(L}) + Z4(LF)
=1

V(L3) = V(Lg) -+ To(L3)
= 1+, (L) +T(L2)
- 3.

Now the pattern becomes clear:

V(L) = V(Lk-1) +Zy(L})
= V(Li-1) + T4(Lhy):

It is easy to see that
Iy (L} = Ty(Lhet) + 1 = Lo(Dh g} + 2= =Ty (L) + k- L=k — 1.
It follows that

V(Le) = V(1) +(k=1)
= V(lp—g)+ (k=1) -+ {k=2)

- ;)(Ll) 142434 (k1)
k(k-1)

2

We can derive a formula for L_; similiarly:

V(Lo1) = V(o) —Iy(LLy)
0 — Ty (L1) + Zy(L2))
]

Il

V(Dog) = V(Lo1)—ZH(LLy)
=) “I")"(LLI) - I—Y(L‘ig
= 3

V(Lw3) = WV(L_g)~Z,(LLs)
3T, (L1,) + T(L23)
6.

1

The recursive equation is

1.«’(L_;.,) 2 V(Lukept) ~ Lo (LLy)
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where Z(L* ;) is given by

I’r(Ll—k) = Iw(Ll-kH)""Iv(Lik)
= Iy{Llp) — 1

= Iy(Lhy) - (k- 1)
Ty(L}) ~ k
r—

i

We see that the formulas for V(L) and V(L) are not symmetric, since the above work
yields:

V(L—k) i V(L_.k+,1) + &

:k(ic +1)
2 -

We observe that the invariant evaluated on a link gives a second degree polynomial of the
linking number of the two component link; one for links that have positive linking number
and a different one for links with negative linking number. It is easy to see, and harder to
check, that the same will be true for arbitrarily high order link homotopy invariants of two
component links. This is to be expected since linking number is a complete link homotopy
invariant of two component links, but it is interesting that it is an example of & class of
Vassiliev invariants in which the lowest order invariant is more sensitive than all of the

higher order ones.

‘We conclude section 4.3 with an example, for two component links, of a reduced actuality
table for a cycle v € Ex*® that involves BC's whose configurations include [3], (3), and
(3} configurations, all but one family of which have nonempty A-configurations. We can
observe the property discussed at the end of section 4.2; for each m between 1 and 3, and
i equal to 1 or 2, there is a BC, with nonzero coefficient in -y, whose chord diagram has m
chords that have at least one endpoint on (S1);. This example will be used to show that
our invariants distinguish the Whitehead link from the unlink.
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Figure 4.38 Here are all of the bozes of the reduced actuality table that receive nonzero
indices in this eyele.

O=0l>=0l0=S>
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Figure 4.39 FEvaluation of the invariant on the Whitehead link.
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We should point out that to find an invariant that distinguished the Whitebead link
from the unlink, we first worked out the caleulation for the Whitehend link without actually
konowing the value of (1,7} on the needed links and nice immersions. We then worked to
find an invariant that used the chord diagrams that we knew we needed, so in a sense we
worked backwards.
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4.4 Vassiliev Invariants and Polynomial Invariants of Links

In this section we investigate the remarkable relationship between Vassiliev link invariants
and some of the polynomial link invariants. This relationship was first explored in the case
of knots by Birman and Lin in [BL] and is also discussed by Bar-Natan in [B}. Given a very
general one variable form of the HOMFLY polynomial on a knot, Birman-Lin’s result is that
when we express the polynomial as a power series obtained by first replacing its variable ¢
by the Taylor series expansion of ¢¥, the resulting series is seen to have coefficients that are
knot invariants of finite type.

Recall the axioms V1, V2, V3 and V4 from §3.4. By construetion, all of our invariants
are finite type lnk invariants. In [BL] it is proved that all finite type knot invariants (with
a slightly more pallatable axiom structure) come from invariants obtainable by Vassiliev’s
methods. The proof, which constitutes a large part of [BL], is essentially a {quite complex)
tantology. This leads me to conjecture strongly that the invariants constructed in this paper
also give all invariants satisfying these axioms. This belief is shared by Stanford, who has
independently constructed finite type invariants for links using different methods in [S]. I
believe that the proof of the equivalence of the two approaches should be straight-forward.

In its usual form, the HOMFLY polynomial, in [HOMFLY], is a two variable polyno-
mial invariant of links. Jones showed in {J1] that there is a sequence of polynomials Hm,
which determine both the two variable HOMFLY polynomial and the one variable Jones
polynomial from [J]. Let L., L- and Lo be a triple of links for which some chosen set of
planar link diagrams differ from each other only at the location of a single positively signed

crossing in L.

Figure 4.40 Llustrations of Ly, L_ and Lo at the special location:

> > =<

Let I7 denote the unknot and let Uy, denote the unlink of n components. The general form,
where { is & variable and /m is an integer, of this polynomial . ; is completely determined
by the following two axioms:

HL (™2 H (D) — YR H (L) s (82 ¢7Y2) Hir o (L),

Axioms H1 and H2 imply a third axiom H3 which gives the value of Hmy¢ on Un, We list
H3 because we will need it to prove the next theorem.

: #m1)/2, g tma)/3\ P
H3. Hpp(Un) = ( 77173 ) '

The following theorem generalizes theorem 4.1 in [BL] to our setting:
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Theorem 4.41 Let I be an n-component link and let H, (L) be its HOMFLY polynomial.
Let Wi (L) be obtatned by replacing t by e¥. Suppose that

is the power series expansion of Wny thot results from replacing €¥ by its Taylor series
about y = 0. Let e, be the i™" coefficient of the power series empansion of

(ey(m+1)/2 - e—y(m-u)/z)"*l

e¥f2 @ u/2
where the series is obtained by replacing e¥ by its Taylor series about y = 0. Then
Uy = Wma(L) —
is an n-component link invariant of finite type of order 1.

Proof: This proof follows that of Birman-Lin closely, proving that each 4, satisfies the
axioms we presented for Invariants of finite type. The first step is to define Hp, »(L7) for any
immersion L7 of n eircles that has j transverse double points, i.e. realizes a [f]-configuration.
We can do this recursively. For any immersion Li, let L, and L.. be the links obtained by
the two ways of perturbing the double polnt into a nearby passing of strands.

Example with Figure 4.42 One such triple Ly, L.. and L1:

CBACUBATS;

Now define Hy,(L}) by
HAA. Hmp(Ly) = Hmp(Lo) = Hye(L3)-

Let L7, L7 | I} and Ii* be a set of four immersions that vary as in the example below.
In the same way as the crosging of L% is called a positive crossing, the lack of a crossing in
that location in L} is called a smoothing.

Example with Figure 4.43 One set of L3, L2, I8 and L%:

LMW
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We can recursively define H{(LIt1) by
HAB. Hme(L}) = Hpo(L2) = aHma(LE1),

where o = (~1)MO+HO++1 for the usual meanings of s, ¢, n(s) and n(t). This equation is
simply the extension of H4A to immersions with more double points. The axiom I11 gives
two more equivalent skein relations, which are its generalizations to linked graphs:

H5A. HHO/2H (L7 — = OO 2 o (DY) = (42 = 2712 o o 1),
or, equivalently, solving for H,, ;(Lﬂf‘l):

HEB.  Hm (L) = ¢t B f(E5Y) o (g2 g =D/ | (1),
Combine H4B and HS5B to obtain

QHma(L2) + Hpt( L) 5= Hentl I = Ht (271 + 70D H (L5
+ (t-—wz — t“(""+3)/2)Hm t(Lﬂ"l),

which gives
Hona (L) = o (™0 — 1) B o(L271) o+ (7™ = 4= B (D57

We have expressed the value of the polynomial on an immersion I/ by a sum of poly-
nomials of other immersions with fewer crossings and perhaps more components. Number
the double points of I by 1,2,...,J. Each of these crossings can be split, or resolved, into
a negatively signed crossing and a smoothing by the above equation. Now we can express
the HOMFLY polynomial as a sum of HOMFLY polynomials of 27 links as follows:

1. Let A be the collection of sequences of § letters that have either an A; or an 5 in
the i entry, 1 <4 < j.

2. Write L7 as L(z1,2,. .. ,&7), where each 2 stands for a self crossing. If we resolve the
first crossing, let L{Sy,Z2,.-.,z;) refer to the immersion with 7 — 1 self intersections
and a smoothing at the location of the first self intersection of L{zi,...,z;). Let
L(My,2q,...,x;) refer to the immersion with j — 1 self intersections and a negahwely
signed crossing at the location of the first self intersection of L(xy,...,2;).

3. Now resolve the second crossing ze in both L(Mi,xs,...) and L(51,22,...) in the
second entry. Continue this process to obtain & collection of links (with no self inter-
gections)

{L{a)} o & A}.
4, The polynomial H,: (L(zy,-.-,2;)) can be written
Hent(L(@1, 1oy 25) = (3 (870 F) = Mo/ = (m=Bi2ySe g (1(a)),

where M, is the total number of M’s, regardless of subscripts, in a and &, is the total
number of 5's in a.
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We will vewrite Hy,.(L7), replacing the variable ¢ by e¥. Let Wy, (L?) be this new
expression; then

W y(L7) = Q(EaeA(Bmy{m-H)/B - 1)Ma (e~¥m/?% _ g=¥(mH2)/2)5a Wony(L{a)).

Jones showed in [J] that if we set £ = 1, then Hm(L(a)) = (m +1)¥=!, where NV is the
number of components of the link L{az). Setting £ = 1 is the same as setting y = 0, which
gives the constant term of Wi, 4(L(a)) when we expand Wy, ,,(L(a)) as a power series. The
result is that every summand Wi, ,(L(a)) in the expression for W;,4(I4) has a nonzero
constant term.

Replace e¥ by its Taylor series expansion about y = 0. When we expand the term

(e--y(mml)ﬂ _ 1)M..’

the first nonzero term in the series is (—y(m < 1))Ma, since

2 2
e—wmt)/2 (L =ylm- 1)+ !’,...(."'._’Eéii)__ e v v ) e 1

Similiarly, the first nonzero term of the series of (e=¥"/2 — ¢=¥m+2)/2)8s i5 45 We know
that M, + 8, = 7, s0 the series expansion of Wi ,(L7) is divisible by 1. Therefore the
series expansion has the form ‘

Wm,y(Lj) = Z::me.i(Lj)yi = Eizjwm,i(LJ)ﬂi;

since W, :{(L7) = 0 if 1 < §. We see now that w,; satisfies V3, and it satisfies V1 simply by
using term by term series addition and H4A and H4B. We know by H3 that wwm s(Un) == eng,
where [/, is the unlink of n components. Recall that for evaluations on n component links
we defined Um,i = Wm,i — cni. Since each en,: is 8 constant, we see that um; satisfies both
V1 and V3 and by construction um(Uy) = 0, which is V2, The axiom V4 falls out of the
definition of H4A and H4B. To see that we can get a legitimate reduced actuality table
from each of the u; m, simply evaluate some um s on one immersion L' realizing each {7}-
configuration, with the provision that if the [I]-configuration is inadmissable, then L' is
chosen to be a good model (see section 2.5). The evaluations give numbers which can be
entered into the appropriate boxes in the top row of a reduced actuslity table. It can be
shown that these indices satisfy the so called 4T relations; see [B]. For i € {1,2,3}, and
Jj € {1,2}, the 4T relations are relations between the indices of diagrams I);;, pictured
below, from [I]-configurations and a certain diagram I, also pictured below, from some
J that is either an (I} ,~configuration or an (I).-configuration. Using our notation, the
relations are

(_1)I—|~1~|~n(t1)(:Z-I(Dll) e Ij(Dm))
= (=1)""5NT1(Dy) + I1(Daa))
(Ml)f-ld.l—n(t;;) (IJ(D:«H) 4 II(Daz))

(D)

il

where {ty,12,%a} iz the grouping of three points in J and n(fx) is the number of ¢ in the

standard ordering of the points of J.
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Figure 4.44 These are the relevant segments of the diagrams Dy, Iz, D21, Dea, Dar,
Dsy and . Let’s assume that all seven pictured diagrams are identical outside the locations
we are showing. Curved segments indicate parts of circles and stroight segments indicale

chords.

The fact that our diagrams satisfy the 4T relations is immediate from our construction.
The relations are just another way of saying that, in a cycle vy € B[ ”, certain cells in the
boundary of BC’s from the diagrams D;; must cancel the contribution of the BC whose
diagram is D. Of course, this holds even if the BC corresponding to D enters 7y with coef-
ficient zero (which may happen if the BC’s pictured are all from Xpa). It Is also immediate
that our construction provides all possible diagramatic solutions to these relations. We can
conclude that the tables of the invariants of finite type that come from the coefficients of
the expanded HOMFLY polynomials have a top row that is obtainable using our methods,
since the top row of the table is given by some diagramatic solution to the 4T relations.

Now, for each j < I, pick legal representative curves L7 for ench [f]-configuration,
and evalnate um,;(l}f). The numbers obtained by these evaluations are entered into the
appropriate boxes in the 7% row of the reduced actuality table for um,r. This table does
give a link invariant, since It 1s constructed to give one of the coefficients of the HOMFLY
polynomial. The proof that this table is obtainable by our methods could be completed by
proving that the the lower levels of the table of any finite type invariant correspond to the
lower levels of a table obtained by our method in Chapter three, which would essentially be
generalization to links of lemma 3.6 and theorem 3.7 in [BL]. As I mentioned, I conjecture

that this can be done.



5 The Proofs of Lemma 1.6, Theorem 3.4, and Theorem
3.6

5.1 Introduction

We will now present the proofs of the above mentioned lemnma and theorems. I believe that
these proofs do not provide any significant geometric insight into our process and that is
the reason to delay these proofs until now. The proofs of lemma 1.6 and theorem 3.6 are
both straight forward applications using linear algebra. The proof of theorem 3.4 is a very
straight forward generalization of theorem 3.1.2 in [V1}].

5.2 The Proof of Lernma 1.6

Proof: Qur choice of perturbation of I'¢ insures that the zero map is not contained in
T4 C T2, a3 the zero map is too singular for our purposes. Therefore I, which is 3n(2d+1)
dimensional, can be viewed as lying in some 3N + 1 dimensional vector subspace of T'%¢ ¢
R%Y, where N = n(2d +1). Let J be an (4, B, C)-configuration of complexity 7. Recall
that p € M(I4,J) if and only if p is a solution to the matrix equation & (i), where

$ye homR(RaN'H,'RaI ).

As an illustration, let 5 and ¢ be the first and second points in the first grouping of the
A-configuration of J. ‘T'he last 3NV entries of the first row of such a matrix ®; would look
like: ,

1 cost —coss sint —sins cos2t —cos2s +++ cosdt —cosds 000 «-- 0,

. where, without loss of generality, we assume that I'¢ takes up the last 3V coordinates of
a 3N - 1 dimensional subspace of I'*%. Let & be the map which takes any J’, where J' is

equivalent to J, to the pssociated $p, t.e.
&:{J'|J' ~ J} = homp (RPN R¥).
Let
L, = {M & homg (R**', R¥) | M has rank r £ m = min{3N 1,37} }.

- We know, by the Produets of Coranks theorem in [AVG], that L, is a smooth submanifold
of homp (R3N+! R3) of codimension (3N + 1 — #)(3] — 1) and Is empty if this product is
negative.

It is & consequence of the Weak Transversality theorem [AVG] that we can perturb € an
arbitrarily small amount in order to insure that @ is transverse to each of the L., for r < m.
Let’s assume from now on that @ is transverse to UremIy. The result iz that *I'—I(Lm_t)
has codimension (3N +1—m + )31 —m 4-t) for t = 1.

To prove part A of lemma 1.6 we need = little lemmas:
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Lemma 5.1 Ift = 1, then ®~Y(Lpm.t) has measure zero in {J' | J' ~ J}.

Proof of the lemma: We can cover ®*(L-:) by & countable collection {8y}, of open
balls that have all have rational radius. The intersection By M ®~!(Ly—:) has measure zero
inside By, thus & (L) has measure zero. [

The consequence is that for almost all J* ~ J, the map ®, has maximal rank m.
Fquivalently, almost all J/' ~ J have the property that M (T%, J) has codimenston exactly
31 inside I provided that T < N.

If I > N and &y has maximal rank 3N, then @, is injective and has trivial kernel.
Since I'? is affne and doesn’t contain zero, the set M{(1'4,J') is empty. This concludes the
proof of part A of lemma 1.6.

Let’s prove part B: If 7 < N, then
& Yoy o) = {J' ~ J| M(T% J') has codimension 3T —#,¢ > 1}
and this set has codimension at least
(3N +1— 3] 4 £)(3] — 3 +1) = (38N — 8T +1 -+ 1)
as desired. If J < 3+L then 2T < 3N — 3T + 1 and it follows that
Am{J' | J' ~J} S 2 S 3N -3 +1 S 43N =3I +1+1)

for all ¢+ = 1. Therefore ®~1(Las—) is empty for each t = 1 and every M(T¢,J') has
codimension exactly 3/. Part B is now proved.

Finally, let’s prove part C: Suppose that [ > N and dimp M (19, J%) = s = 0. Then
dimp ker @y =541,

and the set of such J/ have codimension at least (s + 1){(3] — 3N + &) inside the set of
configurations equivalent to J. If

3I — 3N =2l = dim{J' | J' ~ J},

then the set of J' for which M(T'%, J'} = () is itself empty. If 7 > 3N, then M(T%,J) = §
for every J' equivalent to J. This proves part C, and concludes the proof of lemma 1.6.

5.3 'The Proof of Theorem 3.4

This proof is a generalization of the proof of Vassiliev’s theorem 3.1.2 in [V] and [V1], and
follows Vassiliev’s proof closely. Recall that p(J) refers to the number of geometrically
distinet points of an (4, B, C)-configuration J. Reeall that |A| and |C] are the number of
points in the A and C configurations of J, respectively, and that §4 and §C are the number
of groupings in the A and € configurations of J, respectively. Also recall that b refers to
the cardinality of the B-configuration of J. Let F = |4 N<eBr. We can filter Q7 - 74
by
WCF CFyy,y Qo Far =8y = Q.

Recall that Z; refers to the union of all J-blocks from complicated J.
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Lemma 5.2 Z; = Foros.

Proof: Let J be a configuration of complexity I. ¥irst, we will show that if J is non-
complicated, then p(J) = 2T or 21 — 1; thus showing that the ./-blocks of noncomplicated
configurativons are contalned in Foy — Fhr.gy. If J is an [I]-configuration, then |A} = 244,
IC] = 28C, and b =0, and so |A| + |C| = 21 = p(J).

If J is an (I} 4~configurationor an (I)-configuration, then b = 0 and 2(}§4 -+ ﬂC') +1=
A} -+1{C|. Tt follows that |A] -+ |C| = 2T — 1 = p(J).

If J is an [I — 1]*-configuration, then |A| = 2§A, |C| = 28C, and b= 1. It follows that

HA 4 §C+1=1
= A+ (O] = 2(1 ~ 1)
= p(J)=|Al+|C}+1 =2l ~1.

Next, we will show that if p(J) == 21 or 21 — 1, then J iz noncomplicated, We will use
the fact (%) that |A| + |C| = 2(0A +#C). If p(J) = 21 and b = 0, then |A| +1C| = 21 by
(%), and J 18 noncomplicated.

Suppose that p(J) = 27 and b = 1. If the point of the B-configuration of J is coincident
with some point in the 4 or € configuration of J, then p(J) = |A| + |C|. This implies
that §A - ' = I + 1, which cannot happen by (*) If the point of the B-configuration
is noncoincident, then p(J) = 4] +|C| + 1 == 2f. This implies that §4 + ' = I, which
contradicts (x).

Suppose that p(J) = 21, and b > 1. We know that |A|+ |Cl+b 2 21, So, $4 +§C = I,
and thus |A] + {C] = 2I by (+). This contradicts the hypothesis.

Now, suppose that p(J} = 27 — 1. If b=0, then [A| -+ |C| = 21 — 1, which tells us that
HA 4+ $C = I = 1. Tt is immediate that J must be noncomplicated.

If b =1 and the distinguished point is coincident with a point of the A or € configura-
tions of J, then |A|+|C| == 21— 1. It follows that §4+§C == I, which contradicts («). If the
distinguished point is not coincident, then |A| + [C] = 2] — 2. This gives JA +§C =T — 1,
which implies again that J is noncomplicated.

Finally, if b > 1, then |A[+ |C]+ b = 2] — 1. This gives $A + §C > I - 1; thus
| Al 4 |C} = 2T — 2 by (*). This contradicts the supposition that p(J) = 2I — 1. O.

Following Vassiliev, let £, be the homology spectral sequence converging to Hy(S)y —
£2r-1), induced by the filtration given above. By definition & l_b = Hop(Fy = Fau1).

Lemma 5.3 The connected components of I";—Fa_l are in one-to-one correspondence with
the J-blocks where J has complexity I, end p{J) = a.

Proof: By lemma 3.2, two J-blocks from two nonrelated configurations do not intersect,
i.e. the space F, — F,_; i5 the disjoint union of & finite number of J-blocks. It remains
to show that each J-block is closed in F, — F;_j, and this fact follows from the discussion
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in sections 2.3 and 3.3. Briefly, any cell (of any dimension, not just codimension one) that
lies in the boundary, in Qr — £y, of a given J-block B; Is sither a subset of By or arises
dlagramatically from an edge contraction. Suppose thet ¢ is any cell in By, and that the
diagram of a cell f is obtained from the diagram of e by an edge contraction. Reguardless
of whether e is a FPC ar a BC, the diagram of e has a = p(J)} points and that of f has
p(J) — 1 points. Thug f is not in the space Fy — ffyy. O

As a result of this lemma, Sj,b splits into a direct sum of groups Heiu(B;) over all
(A, B, C)-configurations J of complexity I and such that p(J) = a. We must now show
that if J is complicated and k = 3N — 2, then H(B;) = 0. Let's view By as a fibration
with base {J']J’ ~ J} x M(F?,J) and fiber S;. If J is complicated, then p(J) £ 27 — 2
and so the base of this fibration has dimension less than or equal to p(J) + 3N — 37, with
equality for d < Mgﬂ (see the proof of theorem 3.21), So, we need to show that the one
point compactification of the fiber has trivial homology groups in dimensions greater than
or equal to I + 1. Recall that we are taking closed homology, so we need to consider the
homology of the one point compactification of the fiber.

Let M be a grouping of points of cardinality 4 in the A or €' configuration of J, and
suppose that 5 is a simplex spanned by Eﬂ&ﬁﬂl vertices corresponding to all unordered pairs
of points of M. A face of S is called generating if for every s and ¢ in M, there is a2 chain

of pairs that are vertices of S joining s and t.

Example 5.4 Suppose that M = {t1,1,ta,t,ts}. The generating complex K(MY) is the
simplex spanned by the 5%11—1 pairs of unordered points of M. The face, spanned by ihe
pairs

(t1, ta), (2, ta), (ta, t4) and (t4,15),

is generating, while the face spanned by
(t1, 22}, (41, 23), (t2, ta) and (i4,ts)

18 not.

Define K (M) to be the cell complex obtained by taking the quotient of § by the sub-
complex consisting of the nongenerating faces of 5. For each (A, B, C)-configuration J,
define K(J) to be the join of generating complexes K (M), over all groupings M of the A
and ¢ configurations of J. We will call K(J) the generating complezx of J. It is immediate,
and Is lemma 3.6.3 in [V], that the closed homology of the fiber of By, viewed as above,
is isomorphic to the homology group of the generating complex K(J). The next example
demonstrates this.

Example 5.5 Letn =2 and let J be a (3)q-configuration. Suppose there is a pair (81, 82)
in the A-configuration of J and that (t;,%2,ts) 8 the grouping of three points in the C-
configuration of J. Recoll that the standard simplex 55 associated to this configuration is
the union in RM of the interiors of four simplices. These simplices are spanned by the
follounmg four collections of points in RM where the map ) and the integer M are as in
lemmao 1.9 and the discussion following it.

This collection corresponds to the maximal generating collection of J, in the sense of
section 1.5:

{M(51, 82), Alt1, 32), A1, a), M, ta}}.
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The next three collections correspond Lo the three submaximal generating collections of
J:

{A(s1,82), A(t1, t2), A(t1, t3) },
{A(s1,82), A(t1, 12), Alta, ta) )
{A(s15 82), At1, ta), A(ta, ta) }-

Let gy and gy be the groupings of two and three points, respectively. K{gi)} is a point and
the chain group C(K (g —2)) is the quotient of o free abelian group G and a certain subgroup
H. The group G is generated by all of the faces of K(ga). For convenience of notation, let

* s12 == A(S1,82),

o 1 = At t;), where1 <4< <3,

e (t:j) refer to the (zero dimensional) simplex spanned by the point tij,
o (tij ) refer to the simplez spanned by ty; ond iy, and

¢ (12,113, %23) refer to the simplex spanned by these three points.

Using this notalion, G is generated by

(t12, $13, t23), (B12, t1a), (Baz, t2a), (B3, taa), (t12), ($13) and (tas)

and ‘M is generated by (t12), (t13), and (t23). The complex K (J) is defined to be the join of
K(go) with K(g1), which is o zero dimensional simplez (8y2) in the above notation. The
(graded) group G/H is isomorphic to the free abelian group generated by

(12, t13, f2a), (12, t13), (P12, tos) and (ty3,10),
and so the join K (J) has chain group isomorphic to one generated by
(812, t12, 13, tas), (812, L1a, T1a), (812, L1z, E2a) and (812, Laa, £23).
It is immediate that H.(S1) =2 H(K(J)).
Now it remains to prove that if J is complicated and of complexity I, then Hy(K(J)) =0
when k = I — 1. Following Vassiliev, we can reduce to the following theorem, using the

Kiinneth formula, and the homology of joins (see appendix 1 in [V1]). The theorem is
theorem 3.6.3 in both [V] and in [V1].

Theorem 5.6 For any set M with p clements, H(KM) = 0 for k # p—2, and
Hy2(K(M)) = GW=D, where G is the given coefficient group.

Proof: This is proved as theorem 3.6.3 in [V1]. O

'T'his completes the proof of theorem 3.4,
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5.4 The Proof of Theorem 3.6

We now turn to proving that By is a trivial bundle, when viewed as a bundle with bage
{J7"|J7 e+ J} and fiber M(T'%, J)x8;. Let J be an (A, B, C)-configuration and, without loss
of generality, assume that J has points on all n copies of 5% in [[,5?. T'he configuration
space C = {J*|J" < J} is homeomorphic to (57) x (0, 1)?/)-". We can think of C as
being covered by as many open sets as there are BC's in By, where each BC is enlarged
slightly so that the resulting set in the open cover overlaps all of the neighboring sets. Fix
gorne J; in € and some ¢ between 1 and n. Consider the open sets corresponds 40 t0 &
class of conligurations whose chord diagram differs from that of Jy by the placement of
the first point on ($1!),. Let 1 be the number of these open sets and pick representatives
Ja,Jz,. .., Jy of these classes so that the first point of Ji on (S7), corresponds to the second
potnt of Ji_i on (§%),, i.e. the first point rotates counterclockwise as we pass from Ji.; to
Je. Let M(I¢, J) x Sy refer to a generic fiber and let or be the open set corresponding to
(the equivalence class of) J, 1 £ k < p. As we pass from o to o1, there is an induced
twisting map Ty : M(I'%,J) x 87 — M{I%,J) x 8;. We use T, to refer to the twisting
map of the transition from o, to 01. ‘To prove the theorem it is sufficient to show that the
composition of the twisting maps, indicating the passage from o; to 03, then og to 03, and
so on, finally around to op again, is the identity on the fiber.

Recall that, for any J™ « J, we can view M(T'%,J7) as the solution space in I' to
the matrix equation ® ;& = 0, where ®;r & Homp (R, R¥). Let [J;] refer to the
equivalence elass {J}|J; ~ J;}. Let's point out that we will abuse this terminology slightly;
when we say that we are going to pass from {J;] to [J;11], we are really saying that we are
moving through the open set o4, which contains [J;], through the overlap 0;M 0,4 and into
[Z541] © 0341, Given this, as we pass from [J1] to [Jz], we can view the zero point 0 € (S1),
as travelling from some location between the last and first points of [J1] on (51}, to a point
between the first and second points of [J;] on (§1),. We are assuming that all of the points-
of [J1] on (S1),, and indeed on all other circles in 1] S!, are fixed relative to each other.
We can maeke this assumption because the relative positions of the points of [J1] on (5%),
is determined by the (0, 1)#{%) coordinates in the bundle. Our passage actually places us
in the overlap o1 Noa N {J7]. In general, we will view the passage from [J;] to [Jp1], for
1<j=<p~1,and from [J,] to [J1] the same way.

For any J" ++ J, let p1(J7),pa(J"),- .., Pasy(J7) be the parameters of the points of J”
written in the order in which the points appear in the standard ordering of the points of J*
and let pm(J™), Pmt1 ()51 s Pt ({J7) be the parameters of the points of J7 N (S1)..
The transition from ¢; to 0p induces & map F) taking the (parameters of) points of Ji to
the {parameters of) points of Jo. The map F| simply changes the order in which some of
these points are written:

Py (pe(1)) pr(J2), Ve & {m,m +1,...,m -+ vho,(J}},
Fi{pe(J1)) pr-1(J2), Yk e {m-+1,m=2,...,myn},
Fi(pm(N1)) = pp.,(J)(JB)-

The transitions from 0; 10 041, 2 £ § < u =1, and from o, to oy induce similiar maps
By Fa, .0, By,

i

i

Let’s fix an explicit format for the matrix ®7,. One way of obtaining an explicit expres-

91



sion for @, uses the 3/-form wy, (see section 2.2). Recall that wy, is the wedge product
of I 3-forms, each corresponding to either a pair of points from a grouping in the A or '
configurations of Ji or to a single point in the B-configuration of J1. We can construet
¢, by letting each of these three forms correspond to & block of three rows in &;. We
order these blocks of three rows from top to bottom in @ in the same order that the
corresponding 3-forms wedged together on wy,. Let g1 be any grouping in the A or €
configuration of J; and let s1,5g,...,84 be the (parameters of the) points of gy, written in
the order they appear in the ordering of the points of Jy. The grouping gy contributes a
(8(c— 1) x (3N + 1)) block to &, that can be represented in shorthand form by -

(82 — 81)
(83 — 83)

{514 — 53)

(8a-1 - Soe—2)
(Sq — Srm1)

where our shorthand follows that of section 2.2 and the (3 x (3N + 1))-block (sk — 8x—1)
corresponds, in shorthand, to the 3-form d(sg — 8i-.1). Similiazly, if 5 is a point in the
B-configuration of Jy, then § contributes a (3 x 3N + 1)-block to &7,. This block can be
represented in shorthand by (84), which corresponds to the 3-form, in shorthand, d(0f).
We will refer to this procedure for obtaining & from w,, as P1(J1).

We could apply P1 to Jg,Ja,...,J,, but it is easier not to. Let’s create a second
procedure P2 to obtain the other desired matrices, We can get an expression for ®, by
simply replacing the parameter of each point pe(J1) by the parameter Fi{pp(J1)), 1 £k <
p(J). The procedure P2 is defined recursively. We obtain ®,,, from &3, by replacing each

pr{Jy) by Fi{pe(J;)).

We assert that the solution space to @, obtained by P2, is the same as it would be if
&, was obtained using P1. Without loss of generality we only need to prove the assertion
for ®7,. The assertion follows from the fact that the two procedures yleld matrices which
are row equivalent. Let ®, refer to the desired matrix obtained by P2 and let @, refer
to the matrix obtained by P1. Let g: and {sx} be as above, assume that g, has nonempty
intersection with (8%), (otherwise there is nothing to prove) and let Sm, Smt1, -+ Smys e '
the points of g1M(S1),. Let g3 be the corresponding grouping in J. The grouping gz consists
of points Fi(s), 1 < k < a. Let £),22,...,ta be these points written in the order that they
appear in the standard ordering of the points of Ja. The subcollection tm,tm41, .-+ bmts
are the points of gs N (51),. First suppose that sy, is not the fixst point of Jy on (8H,.
Then, for each k, Fi(s;) = t and the (3(a— 1) x (8N + 1))-block contributed by gz to 2.,
has the shorthand expression

(t2 — 1)
(ta — 12)
(ta ‘“'ta—l)

which is exactly the one it would have as a block in @,..2.
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If 8., is the first point of Ji on (5%),, then

Fi(sk) = ty, YR € {m,m +1,...,m+ 6}
Fi(8mn) = k-1, L Sk <48
Fu(sm) = tints-

The resulting block in &, has the form

/ (t2 —t1) \
(t3 —t2)
(tm..-.], "'“' tm.—.'?.)
(tm~|-|5 i tm—l)
{(tm — tm+5)

(tm-ll-l - t'm.)

(tm-l—ﬁ-l - tm+6—2)
(Tmbat = brpdut)

\ (tﬂ: . tuu 1) )
which is row equivalent to the block of rows in ®,.

Now suppose that 51, 5z,..., 5 are the points of the B-configurationof J; written in
order and suppose that Bm, - - -, fm.s are the points of the intersection of the B-configuration
of Jy with (81),. Let m,...,7 be the corrseponding points in Jo. Then “m, ..., ¥m+s 87€
the points of the B-configuration of Jp that lie on (SY),. If B is not the first point of Jy
on (81),, then Fy(Bmrk) = Ytk for 1 € k £ 8, The resulting (3b x (8N -+ 1))-block in &,
has the shorthand form

on
oy
O
which is exactly the same as the corresponding block in ©,.

Finally, if 7. is the first point of J; on ($%),, then

Fl(ﬁk) = Yk Vkﬁ!{m,m+1,...,m+6}
Fi(Bmik) = Imtk-1, 15k <O
Fi(Bm) = Ymts-
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The contributed (3b x (3N + 1))-block is then

[ On
O
é}'Yrrb--l
a’]"rn+£
597

OYrmpbm1
Ftmts+1

8/
which is row equivalent to the corresponding block in ®;,. This proves the assertion.

Now fix expressions for &7, 2 £ j < p, using P2, Then the passage, from 0; to 02
to o3, and so on, finishing with o, to 01, induces 8 smooth loop @y, 0 < 8 < 2m, in
{® -} J" — J}. This loop passes through all of the &7,’s, only depends on the coordinates
in (81), of the points of J; 1 (S"), and has initial and terminating points at &g, e
® 50y = T3, = Lacan). All we've dope in this passage is rename the parameters py every
time we hit the overlap of two of our covering sets. That is to say that while the parameters
themselves are renamed, their coordinates vary smoothly as we move the zero on (S1),
around the circle. We will now show thal the induced twisting map on the M (4, J)

cormponent of the fiber is the identity.

Next, fix an algorithm for row reducing each @ ;4 to echelon form. Now, M (1<, J(6))
is the solution space to the matrix equation  yg)& == 0, where & = (1, Te, -+, LaN1). We
know that the kernel of & s has dimension 3N - 31 + 1, 80 we can assume that we have
chosen zy,...,Tan-ar41 to be free variables. Let uk(f) be the vector obtained by setting
2, =1 and 2; = 0, for 1 <15 3N—-3I+1. Theset {vy} is a basis for ker @ 74y, and, for each
k, vz depends only on the entries of the matrix (g These entries are all either constants
or linear combinations of trigonometric functions whose domains are the parameters of the
points of J(6). The result is that vx(0) = vk(2r), for 1 £ &k £ 3N —3I' + 1. This is to
say that the vectors ve(f) are sections from the base to the M (T4, J) component of the
fiber that are defined over the entire ¢** circle, hence the composition ) 0 Ty o-+- o1 of
twisting maps is trivial on the M (T4, J} component of the fiber. Since ¢+ was arbitrary, we
have shown that the bundle is trivial on the M (1'%, J) component of the fiber.

To see that the bundle is trivial on the Sy component of the fiber, recall that the closure
of each Sy, is spanned by the lmage under the map A (see lemma 1.9) of unordered pairs
from the maximal generating collection of J;. The orientation of S, is determined by the
standard ordering of the pairs of the maximal generating collection of J;. The action of any
twisting map on the fiber induced by the reordering of these pairs, given by functions G;
to be defined shortly. If gy is a grouping of J) as above, then the ordered collection of pairs

(s1,50), (81,82), - -, (81, 8a), (52, $3)s - - -1 (Sxy Saxm1),
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taken in the (dictionary) order in which the are written, contribute an oriented face to 5.
Let the points £1,.. ., ta the grouping g, the configuration Jp and F] all be as above, The
transition from ot to og induces the map Gt on these pairs. G is defined by

G1{sp, 8q) = (F1(3p), F1(84))-

Similiarly, define

Gj(spa 3q) = (Fj(sp)i I"jf(ﬁq))-
for 2 < § < u, where (sp, 8) Is a pair from a grouping g; of J; and F; Is as above. Now,
the composition ¥y, o Fy.10---0 F1 ig the identity on the points of ¢; and so it follows
that Gy o+~ 0 Gy is the identity function on the above set of pairs. This proves that the
twisting map is trivial on every face of 8 contributed by a grouping. It is clear that the
same srgument works when applied to the set of pairs

(B1y 1)+« 5 (Boy Bo)

that come from the points By, ..., By of the B-configuration of J;. We have now shown that,
over the (1), component of the base, the bundle is trivial on the 57 component of the fiber
. Since ¢ was arbitrary, we have shown that the bundle is trivial on the Sy component of
the fiber. Now we are done.
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