1. Identify the vertical asymptote(s) for the function $f(x)=\frac{(x-k)(x-n)}{(x-k)(x+n)}$.
(a) $x=k, x=-n$
(b) $x=k$
(c) $x=-n$
(d) $x=-k, x=n$
2. Solve the given equation for the variable $x$. Give exact answer.

$$
\ln (M+6 x)=3
$$

(a) $\frac{e^{3}-M}{6}$
(b) $\frac{e^{3}+M}{6}$
(c) $\frac{3 e+M}{6}$
(d) $\frac{3 e-M}{6}$
3. Identify the function that has a horizontal asymptote at $y=0$.
(a) $f(x)=\frac{(x-a)^{6}}{(x-p)^{4}} \quad$ (b) $f(x)=\frac{(x-a)^{4}}{(x-p)^{6}}$
(c) $f(x)=\frac{(x-a)^{6}}{(x-p)^{6}}$
(d) not enough
information
4. Mark buys one coffee and four donuts for a total of $\$ 12$. Linda buys two coffees and three donuts for a total of $\$ 12$. Choose the best strategy to determine the cost of a donut.
(a) Solve the equation
(b) Solve the system $x+4 y=2 x+3 y$

$$
\begin{array}{r}
x+2 y=12 \\
4 x+3 y=12
\end{array}
$$

Solve the system
$x+4 y=12$
$2 x+3 y=12$
(d) Solve the equation $3 x+7 y=24$
5. An investment of $\$ 3600$ earns an annual interest rate of $4 \%$, compounded continuously. How long will it take for the investment to grow to a value of $\$ 7200$ ?
(a) $t=\frac{\log (2)}{0.04}$
(b) $t=\frac{\ln (2)}{4}$
(c) $t=\frac{\ln (2)}{0.04}$
(d) $t=\frac{\log (2)}{4}$
6. Suppose $\log (m)=4, \log (n)=100$, and $\log (w)=-2$, find the exact value of the given expression.

$$
\log \left(\frac{m \cdot \sqrt{n}}{w^{3}}\right)
$$

) 60
(b) 48
(c) -5
(d) 5
7. Basic transformations are applied to the graph of the original function $y=f(x)$ as shown below.


Identify the formula of the transformation graph of $y=f(x)$.
(a) $y=f(x+1)+2$
(b) $y=f(x-1)-2$
(c) $y=f(x+1)-2$
$y=f(x-1)+2$
8. Choose the statement that best describes the function with the given graph.

(a) Polynomial function
(b) Quadratic function

Exponential function
(d) Rational function
9. The graph of the quadratic function $f(x)=a x^{2}+b x+c$ is shown below.


The value of $b^{2}-4 a c$ is
negative
(b) positive
(c) zero
(d) not enough information
10. The graph of a polynomial function of degree 3 is shown below.


Determine the function formula for the graph.
(a) $f(x)=-(x-3)(x+1)^{2}$
(b) $f(x)=(x-3)(x+1)^{2}$
(c) $f(x)=-(x-3)^{2}(x+1)$
(d) $f(x)=(x-3)^{2}(x+1)$
11. Find the radius of the circle with equation $x^{2}+y^{2}-14 x+18 y+6=0$. Give exact answer.
$x^{2}-14 x+49+y^{2}+18 y+91=124$
radius $=\sqrt{124}$
12. Find the slope of the line with equation $3(x+y)=7 x+5$.

| $3 x+3 y=7 x+5$ |
| :--- |
| $3 y=4 x+5$ |
| $y=\frac{4}{3} x+\frac{5}{3}$ |
| slope $=\frac{4}{3}$ |

13. A ball is launched vertically upward from the top of a platform 5 feet tall with an
initial velocity of 96 feet per second. The height $h$ in feet of the ball above the ground after $t$ seconds is $h=5+96 t-16 t^{2}$. What is the maximum height reached by the ball?
max height occurs when $t=-\frac{96}{2(-16)}=3$
max height $=$
$5+96(3)-16(3)^{2}=5+288-144=149$
14. Write the equation of the line that is parallel to the line $24 x-4 y-8=0$ and passes through the point $(-7,2)$.

| $-4 y=-24 x+8$ |
| :--- | :--- |
| $y=6 x-2 \Rightarrow$ slope $=6$ |
| desired line |$|$

15. Construct an equation for the circle shown below, where point C is the center of the circle.

| lenter point |
| :--- |
| $\left(\frac{1+3}{2}, \frac{4+8}{2}\right)=(2,6)$ <br> radius <br> $r=\sqrt{(3-2)^{2}+(8-6)^{2}}=\sqrt{5}$ <br> equation <br> $(x-2)^{2}+(y-6)^{2}=5$ |

16. Find the solution for the given system of equations. Give exact answer.

You must show work that supports your answer.

$$
\begin{aligned}
& 6 x+5 y=8 \xrightarrow{4} 24 x+20 y=32 \\
& 4 x-3 y=18 \xrightarrow{6} \begin{aligned}
24 x-18 y=108 \\
38 y=-76 \\
y=-2
\end{aligned} \\
& 4 x-3(-2)=18 \\
& 4 x=12 \\
& x \\
& x \text { solution: } x=3, y=-2
\end{aligned}
$$

17. Simplify the given expression. Write answer in factored form, reduced to lowest terms, using only positive exponents.

$$
\begin{aligned}
& \left(\frac{9 x^{-6} y^{5}}{y^{-7} x^{4}}\right)^{3 / 2}=\left(\frac{9 y^{7} y^{5}}{x^{4} x^{6}}\right)^{3 / 2} \\
& =\left(\frac{9 y^{12}}{x^{10}}\right)^{3 / 2}=\frac{27 y^{18}}{x^{15}}
\end{aligned}
$$

18. Find all solutions to the equation. Give exact answer.

| $\frac{x}{x+1}+\frac{1}{x-2}=\frac{6 x}{x^{2}-x-2}$ <br> $x(x-2)+(x+1)=6 x$ <br> $x^{2}-2 x+x+1-6 x=0$ <br> $x^{2}-7 x+1=0$ <br> $x=\frac{7 \pm \sqrt{49-4}}{2}=\frac{7 \pm \sqrt{45}}{2}$ |
| :--- |

19. Determine the interval(s) where the graph of the given function is above the $x$-axis. Give answer using interval notation.

20. Solve the inequality. Give answer using interval notation.

| $\|2 x-3\|$ |
| :--- |
| -5 |$|$|  |  |
| ---: | :--- |
| -5 | $2 x-3 \leq 5$ |
| -2 | $\leq 2 x \leq 8$ |
| -1 | $\leq x \leq 4$ |
| solution |  |
| $[-1,4]$ |  |

