Math 232 – Fall 2017 – Thomas – Test 3 Name	
I,	, have neither given nor received unauthorized aid on this test.
•	Show all work! Work may include explanations in phrases/sentences. Use proper mathematical notation and make complete mathematical statements.
•	If you need more room to write, get blank paper from me. Do not use your own paper.
•	Only Scientific Calculators are allowed. NO Graphing Calculators. Test is designed to be completed without a calculator.
•	Exact solutions only.

• Multiple choice and True/False will be graded correct or incorrect, free response will be graded based on partial credit (NO WORK NO CREDIT)

#1-5 Multiple Choice (11points each)

1. Find a power series representation for $f(x) = \frac{1}{9+x^2}$ and determine its interval of convergence.

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{9^n}$$
 with interval of convergence (-3,3)

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{9^{n+1}}$$
 with interval of convergence (-3,3)

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{9^n}$$
 with interval of convergence (-1,1)

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{9^{n+1}}$$
 with interval of convergence (-1,1)

e)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{9^{n+1}}$$
 with interval of convergence (-3,3)

2. Find the Maclaurin series for $f(x)=x^5\sin x^2$. a) $\sum_{n=0}^{\infty}\frac{(-1)^n\,x^{4n+7}}{(4n+7)(2n+1)!}$

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+7}}{(4n+7)(2n+1)}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{(2n+1)!}$$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+7}}{(2n+1)!}$$

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+6}}{(2n+1)!}$$

e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+6}}{(2n+6)(2n+1)!}$$

3. Using series to find the $\lim_{x\to 0} \frac{x^3 - 3x + 3tan^{-1}(x)}{x^5}$ will simplify to finding which of the following limits?

a)
$$\lim_{x \to 0} \left(\frac{3x^2}{5} - \frac{x^4}{3} + \frac{x^6}{2} - \cdots \right)$$

b)
$$\lim_{x\to 0} \left(\frac{3}{5} - 3x + \frac{x^3}{3} - \frac{x^7}{7} + \cdots \right)$$

c)
$$\lim_{x\to 0} \left(\frac{3x^2}{7} - \frac{x^4}{3} + \frac{x^6}{2} - \cdots \right)$$

d)
$$\lim_{x\to 0} \left(\frac{3}{5} - x^2 + x^4 - \cdots \right)$$

e)
$$\lim_{x\to 0} \left(\frac{3}{5} - \frac{3x^2}{7} + \frac{x^4}{3} - \cdots \right)$$

4. Find the first 3 nonzero terms in the Taylor series for $f(x) = \cos x$ centered at $a = \pi$.

a)
$$(x-\pi) - \frac{(x-\pi)^3}{3!} + \frac{(x-\pi)^5}{5!}$$

b)
$$(\pi x) - \frac{(\pi x)^3}{3!} + \frac{(\pi x)^5}{5!}$$

c)
$$(x-\pi) + \frac{(x-\pi)^2}{2!} - \frac{(x-\pi)^4}{4!}$$

d)
$$-1 + \frac{(\pi x)^2}{2!} - \frac{(\pi x)^4}{4!}$$

e)
$$-1 + \frac{(x-\pi)^2}{2!} - \frac{(x-\pi)^4}{4!}$$

- 5. Find the sum of the series $1 + 2 + \frac{4}{2!} + \frac{8}{3!} + \frac{16}{4!} + \cdots$
 - a) e^2
 - b) -1
 - c) ln 3
 - d) 2^k
 - e) sin 2

#6-7 True/False (5 points each)

6. The Radius of Convergence for $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$ is $R = \frac{1}{2}$.

TRUE

FALSE

7. If a series $\sum_{n=0}^{\infty} a_n$ is convergent, then the series $\sum_{n=0}^{\infty} a_n$ is also absolutely convergent.

TRUE

#8-10 Free Response/Partial Credit(#8-9 worth 13 points each, #10 worth 9 points)

8. Write the function as a power series $f(x) = \ln(x^2 + 2)$.

9. Use a power series to approximate the definite integral $\int_0^{\frac{1}{10}} e^{-x^2} dx$ with $|error| \le \frac{1}{300}$. (Helpful information: $\left(\frac{1}{10}\right)^2 = \frac{1}{100} \left(\frac{1}{10}\right)^3 = \frac{1}{1000} \left(\frac{1}{10}\right)^4 = \frac{1}{10000}$, etc)

10. Determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}}$. Must prove all statements.