\qquad

I, \qquad , have neither given nor received unauthorized aid on this test.

- Show all work! Work may include explanations in phrases/sentences. Use proper mathematical notation and make complete mathematical statements.
- If you need more room to write, get blank paper from me. Do not use your own paper.
- Only Scientific Calculators are allowed. NO Graphing Calculators. Test is designed to be completed without a calculator.
- Exact solutions only.
- Multiple choice and True/False will be graded correct or incorrect, free response will be graded based on partial credit (NO WORK NO CREDIT)

\#1-5 Multiple Choice (10 points each)

1. Which definite integral is the area bounded by the graphs of $y=x^{2}-6$ and $y=-x$?
a) $\int_{-2}^{3}\left(-x^{2}+x-6\right) d x$
b) $\int_{-3}^{2}\left(-x^{2}+x-6\right) d x$
c) $\int_{-2}^{3}\left(-x^{2}-x+6\right) d x$
d) $\int_{-3}^{2}\left(-x^{2}-x+6\right) d x$
e) $\int_{0}^{2}\left(-x^{2}-x-6\right) d x$
2. The base of a solid S is the region bounded by $f(x), x$-axis, $x=1$ and $x=3$. Cross-sections perpendicular to the x-axis are rectangles with height equal to three times the base length. Which of the following is the volume of S .
a) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
b) $\lim _{n \rightarrow \infty} \frac{\pi}{3} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)^{2} \Delta x$
c) $\lim _{n \rightarrow \infty} 3 \sum_{i=1}^{n} f\left(x_{i}^{*}\right)^{2} \Delta x$
d) $\lim _{n \rightarrow \infty} 3 \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
e) $\lim _{n \rightarrow \infty} 3 \pi \sum_{i=1}^{n} f\left(x_{i}^{*}\right)^{2} \Delta x$
3. Consider solving the integral $\int \frac{x^{3}}{\sqrt{25-x^{2}}} d x$. After making the appropriate trigonometric substitution, which integral must be solved to complete the solution?
a) $\int 125 \sin ^{3} \theta d \theta$
b) $\int \frac{\sin ^{3} \theta}{\cos \theta} d \theta$
c) $\int \frac{\sin ^{3} \theta}{25 \cos \theta} d \theta$
d) $\int 125 \tan ^{2} \theta d \theta$
e) $\int 125 \tan \theta \sin \theta d \theta$
4. A circular swimming pool has a diameter of 24 ft , the sides are 5 ft high, and the depth of the water is 4 ft . Which integral is the work done in emptying the tank from the top of the pool? (Water weighs 62.4 pounds per cubic foot.) Let $y=$ distance from the bottom of the tank.
a) $\int_{0}^{1} 62.4(12)^{2} \pi(5-y) d y$
b) $\int_{0}^{4} 62.4(12)^{2} \pi(5-y) d y$
c) $\int_{0}^{4} 62.4(24)^{2} \pi(5-y) d y$
d) $\int_{0}^{1} 62.4(14)^{2} \pi(5-y) d y$
e) $\int_{0}^{4} 62.4(12)^{2}(5-y) d y$
5. Consider the integral $\int \frac{x-1}{x^{2}+x} d x$. The partial fraction decomposition would be:
a) $\int \frac{1}{x}+\frac{-2}{x+1} d x$
b) $\int \frac{-2}{x}+\frac{1}{x+1} d x$
c) $\int \frac{2}{x}+\frac{-1}{x+1} d x$
d) $\int \frac{1}{x}+\frac{2}{x+1} d x$
e) $\int \frac{-1}{x}+\frac{2}{x+1} d x$

\#6 True/False (14 points total)

6. A solid is formed by revolving the region bounded by $y=\sqrt{x}$ and $y=x$ about the x-axis.
a. The shape of the cross section is a washer.
b. To find the volume, the following integral is used:

$$
V=\pi \int_{0}^{1}\left(x-x^{2}\right) d x
$$

TRUE
FALSE

TRUE
FALSE

Math 232 - Fall 2017 - Thomas - Test 1 Name \qquad
\#7-9 Free Response/Partial Credit (12 points each)
7. Evaluate $\int \sin ^{3} x \cos ^{6} x d x$.
8. Find the average value of $f(x)=\sin 4 x$ on the interval of $[-\pi, \pi]$.

Math 232 - Fall 2017 - Thomas - Test $1 \quad$ Name
9. Evaluate $\int_{1}^{\infty} x \ln x d x$. State if the integral converges or diverges.
(Hint: Factor out the variable before you take the limit)
\qquad

