Math 232: Test 2A
 Spring 2016
 Instructor: Linda Green

- Calculators are allowed.
- For short answer questions, you must show work for full and partial credit.
- No partial credit for multiple choice / no work needs to be shown.
- Give exact values instead of decimal approximations unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last name

PID

UNC Email \qquad

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: \qquad

True or False. (2 points each) Recall that true means always true, and false means sometimes or always false.

1. True of False: $10 \sum_{n=1}^{\infty} a_{n}$ converges then $\sum_{n=1}^{\infty}\left(a_{n}+1\right)$ converges. $\operatorname{ljm}_{n \rightarrow \infty}\left(\boldsymbol{a}_{n}+\mathbf{j}\right)=\lim _{n \rightarrow \infty} \boldsymbol{a}_{\boldsymbol{n}}+1$ $\left.\sum 1(-1)^{n} a_{n}\right)=\sum a_{n}$ so $\sum\left(1 \int_{\infty}^{n=1} a_{n}\right.$ cont. abs.
2. True or False. a_{n} and b_{n} are both positive and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge. Example: $a_{n}=0$

$$
\begin{aligned}
& a_{n}=01 / n \\
& b_{n}=1
\end{aligned}
$$

4. True or false: Suppose $a_{n}=f(n)$ for a continuous, positive, decreasing function $f(x)$, and $\int_{1}^{\infty} f(x) d x=2$. Then $\sum_{n=1}^{\infty} a_{n}=2$ also. Both converge, bit not net. to exact same value
5. True or False: If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=-0.8$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges. $\lim _{n \rightarrow \infty}\left|\frac{a n+1}{a_{n}}\right|=0.8$
${ }^{6}$ Tr fr or False: If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is decreasing, and each a_{n} is positive, then $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges. Ratio Jos

\&. True or False: If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges.

$$
\text { since }\left|\frac{a_{n}}{n}\right|<\left|a_{n}\right|
$$

-•

$$
\sum \frac{a_{n}}{r} \text { con ce } a b s \text {. }
$$

9. (5 pts) Find the limit of the SEQUENCE, if it converges: $\left\{\frac{3+2 n^{2}}{5-3 n^{2}}\right\}_{n=1}^{\infty}$
A. Converges to $-\frac{2}{3}$.
B. Converges to $\frac{3}{5}$.

$$
\lim _{n \rightarrow \infty} \frac{3+2 n^{2}}{5-3 n^{2}}=\frac{-2}{3}
$$

C. Diverges to ∞.
D. Diverges to $-\infty$.
E. Diverges (but not to ∞ or $-\infty$).
10. (5 pts) Find the limit of the SEQUENCE, if it converges: $\left\{2+(-1)^{n}\right\}_{n=1}^{\infty}$
A. Converges to 1.
B. Converges to 2 .
C. Converges to 3 .
D. Diverges to ∞.
E. Diverges (but not to ∞).
11. (5 pts) Which series is absolutely convergent?

$$
\begin{aligned}
& \text { pts) Which series is absolutely convergent? } \sum\left|\frac{\cos (n)}{n!}\right| \text { conk. by coop to } \\
& \text { (A) } \sum_{n=1}^{\infty} \frac{\cos (n)}{n!} \leftarrow \text { yes, bic } \frac{1}{n!} \leftarrow \text { tent }
\end{aligned}
$$

в. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \leftarrow$ so bic $\sum \frac{1}{n}$ diverges by p-test
C. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \leqslant$ no blue $\sum\left|\frac{1}{\sqrt{n}}\right|=\sum \frac{1}{\sqrt{n}}$, diverges by p-rest
D. None of these series are absolutely convergent.
12. (5 pts) Find all the values of r for which the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{r}}$ converges.
A. >0
B. $r>1$
C. It always converges, for all values of r. D. It never converges, for any value of r.
for $r>0$
n^{r} increases to ∞
so $\frac{1}{n^{r}}$ decreases
3 and hum $\frac{1}{n} r=0$
13. (10 pts) Find the sum of the series.

$$
\sum_{n=1}^{\infty}(\arctan (n)-\arctan (n+1))
$$

$$
\begin{aligned}
S_{1}= & \arctan (1)-\arctan (2) \\
S_{2}=\arctan (1) & -\arctan (2) \\
& +\arctan (2)-\arctan (3)
\end{aligned}
$$

$$
\begin{aligned}
S_{3} & =\arctan (1)-\arctan (2)+\operatorname{arctap}(2)-\arctan (3)+\arctan (3) \\
& =\arctan (1)-\arctan (4) \\
S_{n} & =\arctan (1)-\arctan (n+1)_{v} \\
S_{\infty} & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \arctan (1)-\arctan (n+1)
\end{aligned}
$$

$$
-\arctan (4)
$$

$$
=\arctan (1)-\pi / 2
$$

$$
=\pi / 4-\pi / 2=-\pi / 4
$$

Sum: $-\pi / 4$
(-1) if fail to evaluate arcton(1)
-1 if decimal answer instead of exact instead of suppotis
answer work

2 pto for decimal anger without supporting work
14. (10 pts) Find the sum of the series.

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{2^{n}+(-1)^{n}}{3^{n}} \\
& \sum_{n=2}^{\infty} \frac{2^{n}+(-1)^{n}}{3^{n}}=\sum_{n=2}^{\infty} \frac{2^{n}}{3^{n}}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{3^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a}{1-r}=\frac{\frac{4}{9}}{1-\frac{2}{3}} \quad \frac{a}{1-r}=\frac{\frac{1}{9}}{1+\frac{1}{3}} \\
& =\frac{\frac{4}{9}}{\frac{1}{3}} \\
& =\frac{\frac{2}{7}}{\frac{4}{3}} \\
& =\frac{4}{9} \cdot \frac{3}{1}=\frac{4}{3} \\
& =\frac{1}{4} \cdot \frac{3}{4}=\frac{1}{12} \\
& \frac{4}{3} \times \frac{1}{4}=\frac{16}{12} \times \frac{1}{12}=\frac{17}{12}
\end{aligned}
$$

Sum: \square $17 / 12 \quad J$
2. pts for $\frac{a}{r r}$ fula even if other parts are missing
car sieve 2 pts for spititines sum if mathis else is correct
15. (10 pts) It is a fact that $\int e^{-\sqrt{y}} d y=-2 e^{-\sqrt{y}}(\sqrt{y}+1)$. Use this fact to find $\int_{0}^{\infty} e^{-\sqrt{y}} d y$.

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\sqrt{y}} d y=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-\sqrt{y}} d y \quad \text { limitidea } \\
& =\lim _{t \rightarrow \infty}-\left.2 e^{-\sqrt{y}(\sqrt{y}+1)}\right|_{0} ^{t} \\
& \begin{array}{l}
=\lim _{t \rightarrow \infty}-2 e^{-\sqrt{t}}(\sqrt{t}+1)+2 e^{-\sqrt{0}}(\sqrt{0}+1) \\
\text { pinssis in }
\end{array} \\
& =\lim _{t \rightarrow \infty}-\frac{2(\sqrt{t}+2)}{e^{\sqrt{t}}}+2 \\
& =2-2 \lim _{t \rightarrow \infty} \frac{\sqrt{t}+1}{e^{\sqrt{t}}} \quad \frac{\infty}{\infty} \\
& =2-2 \lim _{t \rightarrow \infty} \frac{\frac{1}{2} t^{-1 / 2}}{e^{\sqrt{t}} \frac{1}{2} t^{-1 / 2}} \\
& =2-0=2
\end{aligned}
$$

16. (10 pts) Choose ONE of the following two questions to answer, using remainder methods from class.
(a) Suppose you use a partial sum to approximate $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. How many terms are needed to guarantee that the approximation will be accurate to within 0.01 ?

$$
\begin{aligned}
& R_{n}<\int_{n}^{\infty} \frac{1}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{n}^{t} x^{-3} d x \\
& =\left.\lim _{t \rightarrow \infty} \frac{x^{-2}}{-2}\right|_{n} ^{t}=\lim _{t \rightarrow \infty} \frac{-t^{-2}}{2}+\frac{n^{-2}}{2} \\
& =\lim _{t \rightarrow \infty} \frac{-1}{2 t^{2}}+\frac{1}{2 n^{2}}=\frac{1}{2 n^{2}} \text { - } \\
& \text { wart } \frac{1}{2 n^{2}} \leq 0.01 \Rightarrow 100 \leq 2 n^{2} \Rightarrow n^{2} \geq 30 \\
& \Rightarrow n \geq 7.1 \\
& n \geq 8 \\
& \text { Answer: } \\
& 8 \\
& \text { - } \\
& n \geq 8
\end{aligned}
$$

(b) Suppose you use a partial sum to approximate $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$. How many terms are needed to guarantee that the approximation will be accurate to within 0.01 ?

$$
\begin{aligned}
\left|R_{n}\right| \leq b_{n+1} & =\frac{1}{(n+1)^{3}} \\
\text { need } \frac{1}{(n+1)^{3}} \leq 0.01 \Rightarrow 100 & \leq(n+1)^{3} \\
\Rightarrow n+1 \geq \sqrt[3]{100} \Rightarrow n & \geq \sqrt[3]{100}-1 \\
& \approx 3.64 \\
n & \geq 4
\end{aligned}
$$

Answer: \square 4

For each series, circle CONVERGES or DIVERGES, circle the correct justification, and fill in the blanks. If more than one justification applies, just circle one justification that represents the first step in your argument. You DO NOT have to complete the problem or show work.
17. (6 pts) $\sum_{n=1}^{\infty} \frac{2}{1+3^{-n}}$

CONVERGES

A. Divergence Test, where limit of terms is 2
B. Comparison Test (ordinary or limit), comparing series with $\sum b_{n}$ where $b_{n}=$
\square
C. Integral Test, using function $f(x)=$

D. Alternating Series Test
E. Ratio Test, where the limit of ratio is \square
18. (6 pts) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$

A. Divergence Test, where limit of terms is
B. Comparison Test (ordinary or limit), comparing series with $\sum b_{n}$ where $b_{n}=$ \square
C. Integral Test, using function $f(x)=$ \square
(1. Alternating Series Test
E. Ratio Test, where the limit of ratio is \square
19. (6 pts) $\sum_{n=1}^{\infty} \frac{1}{n+2^{n}}$
A. Divergence Test, where limit of terms is \square
B. Comparison Test (ordinary or limit), comparing series with $\sum b_{n}$ where $b_{n}=$

$$
\begin{aligned}
& \sqrt[1]{2} n^{n} \cup \checkmark \\
& \text { grab Test, using function } f(x)=
\end{aligned}
$$

D. Alternating Series Test
E. Ratio Test, where the limit of ratio is \square $\frac{1}{2}$
20. (6 pts) $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$

CONVERGES
DIVERGES
A. Divergence Test, where limit of terms is \square
B. Comparison Test (ordinary or limit), comparing series with $\sum b_{n}$ where $b_{n}=$
\square
C. Integral Test, using function $f(x)=$ \square $\frac{1}{x \ln x}$ -
D. Alternating Series Test
E. Ratio Test, where the limit of ratio is \square give credit for $f(x)=\ln (\ln (x))$ since it was unclear what $f(x)$ meant.

