Math 232: Test 2A
Spring 2016
Instructor: Linda Green

Calculators are allowed.

For short answer questions, you must show work for full and partial credit.

No partial credit for multiple choice / no work needs to be shown.

Since you have test version A, please code your scantron sequence number as 111111
(all 1’s).

¢ Give exact values instead of decimal approximations unless otherwise specified.

e Sign the honor pledge below after completing the exam.

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: ..... ... ...
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True or False. (2 points each) Recall that true means always true, and false means some-
times or always false.

1. True or False: If Z a, converges then Z (a, + 1) converges.

n=1 n=1

2. True or False: If Z a, converges, where a, > 0 for all n, then Z(—l)”an converges.

n=1 n=1

- b,

3. True or False: a, and b, are both positive and %im I _ 0 then Z a, and Z b, both
converge or both diverge. " i
4. True or False: Suppose a, = f(n) for a continuous, positive, decreasing function f(x),
and [ f(x) dx = 2. Then Z a, =2 also .
n=1

[ee]

. a .

5. True or False: If lim Z—H = —0.8, then the series E a, converges.
n—o0 n

n=1

6. True or False: If {a,}; , is decreasing, and each a, is positive, then {a,}’ , converges.

[o0]

7. True or False: If {a,}, , is decreasing, and each a, is positive, then Z a, converges.

n=1

[Se] [&e] a
8. True or False: If Z |a,| converges then Z — converges.
n
n=1

n=1



2 (o]
9. (5 pts) Find the limit of the SEQUENCE, if it converges: {g + ;Zz}
- n=1

2

A. Converges to —3

B. Converges to %
C. Diverges to .
D. Diverges to —oo.

E. Diverges (but not to oo or —c0).

10. (5 pts) Find the limit of the SEQUENCE, if it converges: {2 + (-1)"},.,
A. Converges to 1.

Converges to 2.

Converges to 3.

Diverges to oo.

m O 0w

Diverges (but not to ).

11. (5 pts) Which series is absolutely convergent?

[o¢]

cos(n)
n!

D"

n

>
i

—_

1
= Vn

D. None of these series are absolutely convergent.

C.

[ i1

Il
—_

(o]

—1)
12. (5 pts) Find all the values of r for which the series Z ( nr) converges.
n=1
A.r>0
B. r>1

C. It always converges, for all values of r.

D. It never converges, for any value of r.
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13. (10 pts) Find the sum of the series.

Sum:

i(arctan(n) —arctan(n + 1))

n=1

N

arctan(z

ol
t

-4 -3

-2 -1

|
ol
i




14. (10 pts) Find the sum of the series.

[o¢]

2"+ (-1)"
Z T

n=2

Sum:




15. (10 pts) It is a fact that fe“/? dy = —2¢” V¥(4/y + 1). Use this fact to find f eV dy.
0

CONVERGES to: or DIVERGES
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16. (10 pts) Choose ONE of the following two questions to answer, using remainder
methods from class.

[o¢]

(a) Suppose you use a partial sum to approximate Z =t How many terms are
n=1
needed to guarantee that the approximation will be accurate to within 0.01?

Answer:

o0

(b) Suppose you use a partial sum to approximate Z
n=1
needed to guarantee that the approximation will be accurate to within 0.01?

D"

n3

. How many terms are

Answer:




For each series, circle CONVERGES or DIVERGES, circle the correct justification, and
fill in the blanks. If more than one justification applies, just circle one justification
that represents the first step in your argument. You DO NOT have to complete the
problem or show work.

17. (6 pts) Z - +23_n CONVERGES DIVERGES
n=1

A. Divergence Test, where limit of terms is

B. Comparison Test (ordinary or limit), comparing series with ), b, where b, =

C. Integral Test, using function f(x) =

D. Alternating Series Test

E. Ratio Test, where the limit of ratio is

18. (6 pts) Z D CONVERGES DIVERGES

A. Divergence Test, where limit of terms is

B. Comparison Test (ordinary or limit), comparing series with ), b, where b, =

C. Integral Test, using function f(x) =
D. Alternating Series Test

E. Ratio Test, where the limit of ratio is




=1
19. (6pts) ) — CONVERGES DIVERGES
n=1

A. Divergence Test, where limit of terms is

B. Comparison Test (ordinary or limit), comparing series with ), b, where b, =

C. Integral Test, using function f(x) =

D. Alternating Series Test

E. Ratio Test, where the limit of ratio is

=1
20. (6 pts) E 7In() CONVERGES DIVERGES
n=2

A. Divergence Test, where limit of terms is

B. Comparison Test (ordinary or limit), comparing series with }’ b, where b, =

C. Integral Test, using function f(x) =

D. Alternating Series Test

E. Ratio Test, where the limit of ratio is




