FINAL EXAM for Math 233 (Fall 2017)

NAME Key	
UNC EMAIL	PID
INSTRUCTOR	SECTION

Instructions

- This exam consists of 12 exercises, each worth 10 points.
- Write clear solutions so that you can get partial points for your reasoning!
- Write your final answer in the BOXES provided.
- Calculators and other materials are **NOT** allowed.
- The duration of the exam is 3 hours.

HONOR PLEDGE

I certify that no unauthorized assistance has been received or given in the completion of this work.

SIGNATURE	2		
-----------	---	--	--

Problem 1.

(1) **Find an equation** of the tangent plane to the graph of $f(x,y) = ye^x$ at the point (0,2). Express the plane in ax + by + cz = d form.

$$f_{x} = ye^{x}$$
 $f_{x}(0,2) = 2e^{0} = 2$ $f(0,2) = 2$
 $f_{y} = e^{x}$ $f_{y}(0,2) = e^{0} = 1$ $f(0,2) = 2$
 $f_{y} = e^{x}$ $f_{y}(0,2) = e^{0} = 1$ $f(0,2) = 2$
 f

(2) Find a linear approximation of the function $f(x,y) = ye^x$ at the point (0,2).

$$2x+y-z=0$$

$$\exists z=2x+y$$

$$L(x,y)=2x+y$$

$$L(x,y)=2x+y$$

(3) Find an approximation of the value $2.03e^{0.1}$.

$$2.03 e^{0.1} = f(0.1,2.03)$$

 $\approx L(0.1,2.03) = 2.0.1 + 2.03$
 $= 2.23$
 $= 2.23$

Problem 2.

(a) **Sketch** the vector $2\mathbf{u} + 0.5\mathbf{v}$.

(b) **Sketch** the vector proj_vu.

(c) Let $\mathbf{u} = \langle 1, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, 0, 1 \rangle$. Find the angle between \mathbf{u} and \mathbf{v} .

$$= cos^{-1} \left(\frac{1}{\sqrt{2} \cdot \sqrt{2}} \right)$$

$$= cos^{-1} \left(\frac{1}{2} \right) = \pi / 3$$

(d) Let $\mathbf{u} = \langle 1, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, 0, 1 \rangle$. Find the area of the parallelogram of sides \mathbf{u} and \mathbf{v}

= 1.1 -7.1 + [-1]

 $\| \vec{u} \times \vec{v} \| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$

ralve

Problem 3. Find the absolute minimum of the function

$$f(x,y) = x^2 + 2y^2 - x$$

on the region $x^2 + y^2 \le 4$.

critical points:

fx= 2x-1 =0

fy = 4y = 0

J) ×= 1/2

boundary: set $y^2 = 4 - x^2$

to get f(x1y) = x2+2(4-x2)-x

= x2 +8-2x2-X

 $=-x^2-x+8$ on the body

let g(x)=-x2-x+8

critical pti of g:

g'(x) = -2x-1 = 0=) $x = -\frac{1}{2}$ =) g(x) = 8.25

 $=) y^2 = 4 - (-\frac{1}{2})^2 = 3.75$

>) y= ± \(\int \J3.75\)

end pt for ldy: x=-2, x=2

y=-4

Problem 4. Consider the curve in space parametrized by

$$\mathbf{r}(t) = \langle t^2, t^4, t^3 \rangle, \qquad 0 \le t \le 2.$$

(1) Find parametric equations for the tangent line to the curve at the point (1, 1, 1).

Find parametric equations for the tangent line to the curve at the point
$$(1,1,1)$$
.

$$\xi'(t) = \langle 2t, 4t^3, 3t^2 7 \rangle$$

$$\xi'(t) = \langle 2, 4, 3 \rangle$$

$$\chi = | + 2t \rangle$$

$$\chi = | + 4t \rangle$$

$$\chi = | + 3t \rangle$$

(2) Find the work done by the force $\mathbf{F}(x,y,z) = \langle y,0,z \rangle$ on a particle that moves along the curve described above.

$$\int_{C} \vec{E} \cdot d\vec{r} = \int_{t=0}^{2} \langle y(t), 0, z(0) \rangle \cdot \langle x'(t), y'(t), z'(t) \rangle dt$$

$$= \int_{t=0}^{2} \langle t', 0, t'', 0 \rangle \cdot \langle zt, 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 0 \rangle \cdot \langle zt, 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 0 \rangle \cdot \langle zt, 4t'', 3t'', 3t'', 4t'$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 3t'', 4t'', 3t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 3t'', 4t'', 3t'', 4t'', 3t'', 4t'', 3t'', 4t''$$

$$= \int_{t=0}^{2} \langle t'', 0, t'', 3t'', 4t'', 4t'', 3t'', 4t'', 4t'', 3t'', 4t'', 4t$$

$$g(s,t) = f(3s + e^{st}, s^2 + \sin(t^2 + 2t)),$$

 $f_x(1,0) = 1,$

where f is an unknown function. Suppose you know that

$$g(1,0) = 3, f(1,0) = 5, g(4,1) = 0, f(4,1) = 3,$$
Find $\frac{\partial g}{\partial s}(1,0)$.

$$x = 3 \cdot 1 + e^{1/2} = 4 y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 0 = 1$$

$$y = 1^2 + s^2 = 1$$

$$y = 1^2 + s^2 = 1$$

$$f_x(4,1) = -1, \qquad f_y(4,1) = 2.$$

$$S \qquad \qquad Y$$

$$S \qquad \qquad Y$$

$$S \qquad \qquad Y \qquad \qquad Y$$

$$S \qquad \qquad Y \qquad \qquad Y$$

$$S \qquad \qquad Y \qquad$$

 $f_{y}(1,0) = 4,$

$$\frac{\partial g}{\partial s}(1,0) =$$

Problem 6. Consider the vector field

$$\mathbf{F}(x,y) = \left\langle 2xy^2 + 5, 2x^2y - 3y^2 \right\rangle.$$

(1) Is **F** conservative? If the answer is no, please justify. If the answer is yes find a potential (that is, a function f so that $\nabla f = F$).

$$Q_{x} = 4 \times y \qquad P_{y} = 4 \times y \qquad \text{conservative}$$

$$f_{x} = 2 \times y^{2} + 5 \Rightarrow f(x,y) = \int 2 \times y^{2} + 5 \, dx$$

$$= \chi^{2} y^{2} + 5 \times + 9(y)$$

$$= \int f_{y}(x,y) = 2 \times^{2} y + g'(y) = 2 \times^{2} y - 3y^{2}$$

$$= \int g'(y) = -3y^{2} \Rightarrow g(y) = \int -3y^{2} \, dy$$

$$= -y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5 \times - y^{3} + C$$

$$\Rightarrow f(x,y) = x^{2}y^{2} + 5$$

(2) **Evaluate** $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$, where C_1 is given by $\mathbf{r}(t) = t^2 \mathbf{i} + \sqrt{t} \mathbf{j}$ between (0,0) and (1,1).

$$\int_{C_1} \vec{F} \cdot J \vec{F} = \int_{C_1} \nabla f \cdot J \vec{F} = f(J_1) - f(30)$$

$$= 5 - 0 = 5$$

5

(3) Evaluate $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$, where C_2 is the circle $x^2 + y^2 = 4$ travelled in the counter-clockwise direction starting at (2,0).

Since patr :5 closed

Problem 7. A bug is crawling on a sheet of metal modelled by the xy-plane. The temperature of the sheet is given by the function

$$T(x,y) = 2x^2y + 3xy + 10.$$

(1) If the bug is currently at the point (3,1), **find the direction** in which the bug should go to **decrease** temperature most rapidly.

$$\nabla T = \langle 4 \times 9 + 39, 2 \times^{2} + 3 \times \rangle$$

$$\nabla T(3,1) = \langle 15, 27 \rangle$$

$$-\nabla T(3,1) = \langle -15, -27 \rangle$$

(2) Find the rate of change of the temperature at the point (3,1) in the direction of $\langle -1,1\rangle$.

$$\vec{v} = \langle -1, 1 \rangle$$
 $\vec{c} = \text{onit weaks} = \langle -\frac{1}{52}, \frac{1}{52} \rangle$
 $\nabla T \circ \vec{c} = \langle 15, 27 \rangle \circ \langle -\frac{1}{52}, \frac{1}{52} \rangle$

$$= -\frac{15}{52} + \frac{27}{52} = \frac{12}{52}$$

(3) Suppose the bug is now at the point (3,1). **Find an equation** for a curve on which the bug should walk if it wants to stay at exactly the same temperature as it is now.

$$T(3,1) = 2.3^{2}.1 + 3.3.1+10$$

$$= 37$$

$$2x^{2}y + 3xy + 10 = 37$$

Problem 8. A lamina is shaped as the region in \mathbb{R}^2 bounded by the curves x=0, y=x/2 and y=1.

Sketch the region that the lamina occupies (shade it) on the coordinate plane below and find the mass of the lamina if its density is given by

$$\rho(x, y) = x \cos(y^3 - 1) + 2.$$

$$\int \int \rho(xxy) dA$$

$$= \int \int x(os(y^{2}1) + 2) dA$$

$$= \int \int x (os(y^{3}1) + 2) dA$$

$$= \int \int x (o$$

== Sin(-1) +2

Problem 9. Find the volume of the solid that lies in the first octant and is enclosed by the paraboloid

 $z = 1 + x^2 + y^2$ and the plane x + y = 2.

$$\int \int \left(1+x^2+y^2\right) dA$$

$$= \int_{y=0}^{2} \left(\frac{2-y}{1+x^2+y^2} \right) dx dy$$

$$= \int_{y=0}^{2} \left(\frac{2-y}{1+x^2+y^2} \right) dx dy$$

$$= \int_{y=0}^{2} \left(\frac{2-y}{1+x^2+y^2} \right) dx dy$$

$$= \left(\begin{array}{c} 2 \\ y=0 \end{array} \right) \times \left(\begin{array}{c} x \\ y=1 \end{array}$$

$$= \begin{pmatrix} x + \frac{1}{3} & 0 \\ y = 0 \\ 2 & (2-y) + (2-y)^{3} + y^{2} & (2-y) \\ 3 & 4y^{2} & (2-y) \\ 4y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 3y & 6y & 6y \\ 2y & 6y & 6y \\ 2y$$

$$= \int_{y=0}^{y=0} (2)^{y=0}$$

$$= \int_{y=0}^{2} (2)^{y=0} (2)^{y=0} + \frac{8}{3} - 4y + 2y^{2} - \frac{y^{3}}{3} + 2y^{2} - y^{3} dy$$

$$= \int_{9=8}^{2} \frac{14}{3} - 5y + 4y^{2} - \frac{4}{3}y^{3} dy$$

$$= 28 - 10 + 32 - \frac{16}{3}$$

$$\int_{\partial D} x^2 y \ dx - y^2 x \ dy,$$

where D is the region in the first quadrant enclosed between the coordinate axes and the circle $x^2 + y^2 = 4$, and where ∂D is the boundary curve of the region D traversed in counterclockwise direction.

Use Green's Theorem to **compute** this integral.

$$P = X^{2}y$$
 $Q = -y^{2} \times Q_{x}$
 $Q_{x} - P_{y} = -y^{2} - X^{2}$

$$= \iint_{0}^{2} -y^{2} - x^{2} dA = \iint_{0}^{2} -r^{2} r dr dr$$

$$= \int_{0}^{\pi/2} e^{-r^{3}} dr$$

$$=\Theta\left|\begin{array}{c} \sqrt{1/2} \\ 0 \end{array}\right| \left(\begin{array}{c} -\frac{74}{4} \end{array}\right) \left(\begin{array}{c} 2 \\ 0 \end{array}\right)$$

$$= \pi /_2(-4) = -2\pi$$

Problem 11. Find the **volume** of the solid that lies within the sphere $x^2 + y^2 + z^2 = 1$, above the xy-plane, and below the cone $z = \sqrt{x^2 + y^2}$.

Spherical coordinates Set Carlo per sin & dp d & de $= \begin{cases} 2\pi \\ 3\theta \end{cases} \qquad \begin{cases} \sqrt{\pi/2} \\ \sqrt{9} = \pi/4 \end{cases} \qquad \begin{cases} \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \end{cases} \qquad \begin{cases} \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \end{cases} \qquad \begin{cases} \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \end{cases} \qquad \begin{cases} \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \end{cases} \qquad \begin{cases} \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \\ \sqrt{3} \end{cases} \qquad \begin{cases} \sqrt{3} \\ \sqrt{3$ = 24 (0+ 1/2) - 3 = 25 (5) = 75

TT 52

Problem 12. Find the surface area of the part of the paraboloid $x = y^2 + z^2$ between the planes x = 0 and x = 4.

$$F(u,v) = \langle u^{2}+v^{2}, u, v \rangle$$

$$F(u,v) = \langle 2v, 0, 1 \rangle$$

$$= \langle 1, -2u, -2v \rangle$$

$$= \langle 1, -2v \rangle$$

$$= \langle 1$$

= 2.1-3.20 +h (-2v) u= 1+412 du = 8rdr & du = rdr احد (= ٥ حر r=2 =) y=17

で(175万一)