Math 233, Final Exam, Spring 2018

May 3rd, 2018

Last name \qquad
\qquad

UNC E-MAIL (ONYEN) \qquad

- Closed book, closed notes, no calculators.
- Show photo ID when turning in exam.
- Partial credit is important-try all problems.
- Take integrals as far as you can analytically, leaving them as iterated or definite integrals if you must.
- You must show full analytical work to receive full credit, even on the multiple choice problems.
- By putting your name on your paper, you implicitly pledge your adherence to the honor code.

D5FB479C-FEB5-4E2D-A6D1-56DD549D40A5
final-section-002
\#1 2 of 24

Title page continued.

1. (10 pts) Let $\mathbf{F}(x, y, z)=\left\langle x \cos \left(x^{2}\right), z e^{y^{2}}, z^{3}\right\rangle$.

Does there exist a function $f(x, y, z)$ defined on all of \mathbb{R}^{3} with $\mathbf{F}=\nabla f$?
Circle your answer and justify (show your work).
(a) Yes, such a function exists (and your work demonstrates why).
(b) No, such a function does not exist because $\mathbf{F} \neq \mathbf{0}$.
(c) No, such a function does not exist because $\nabla \times \mathbf{F} \neq \mathbf{0}$.
(d) No, such a function does not exist because $\nabla \cdot \mathbf{F} \neq 0$.
(e) Not enough information to determine.

E9C0DBAD-7416-43BE-BE36-0642F5B677F5
final-section-002
\#1 4 of 24

Problem 1 continued.

2. (10 pts) Let $\mathbf{F}(x, y, z)=\left\langle y z \cos \left(y^{2}\right), x e^{y}, z^{3}\right\rangle$.

Does there exist a vector field \mathbf{G} defined on all of \mathbb{R}^{3} with $\mathbf{F}=\nabla \times \mathbf{G}$?
Circle your answer and justify.
(a) No, because $\nabla \times \mathbf{F} \neq \mathbf{0}$.
(b) No, because $\nabla \cdot \mathbf{F} \neq 0$.
(c) No, because $\mathbf{F}(0,0,0)=\mathbf{0}$.
(d) Yes, such a function exists (and your work demonstrates why).
(e) Not enough information to determine.

3DF1F875-4F9D-48EC-9B63-F020331A68F6
final-section-002
\#1 6 of 24

Problem 2 continued.

3. ($\mathbf{1 0} \mathbf{p t s}$) Let $f(x, y, z)=x+y^{3}+z^{2}$. Identify the unit vector pointing in the direction in which f decreases fastest at the point $(0,1,2)$.

984DF073-791D-4CA6-8CEB-CA4F0D53AB9D
final-section-002
\#1 8 of 24

Problem 3 continued.

4. (10 pts) Evaluate $\int_{0}^{3} \int_{x^{2}}^{9} x e^{-y^{2}} d y d x$ by integrating over the same region with the order of the iterated integrals reversed.

71D2F059-805D-4108-8033-86AC2A261529
final-section-002
\#1 10 of 24

Problem 4 continued.
5. (10 pts) Show that the vector field

$$
\mathbf{F}(x, y, z)=\left\langle y z+y \cos (x y), x z+x \cos (x y), x y+e^{z}\right\rangle
$$

is conservative and evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C follows a curve along the paraboloid $z=x^{2}+y^{2}$ from $(0,0,0)$ to $(1,1,2)$.

Problem 5 continued.

6. (20 pts) Consider the function $z=f(x, y)=4 e^{x y}+x y$.
(a) Compute the first partial derivatives of f with respect to x and y.
(b) At the point $(1,1)$, write the equation for the tangent plane to the surface described by the function.
(c) What is the linear approximation to f at the point $(1,1)$?

22BBC99A-8572-4055-BA05-00411D1346F9
final-section-002
\#1 14 of 24

Problem 6 continued.

7. (20 pts) Consider the cone $z^{2}=x^{2}+y^{2}$ between $z=0$ and $z=1$.
(a) Find the surface area of this cone.
(b) Find the volume of the region above this cone and inside the sphere of radius $\sqrt{2}$ centered at the origin that encloses the cone.

DBCE72C5-60E4-4E85-A9FB-D1E49BB1BA4C
final-section-002
\#1 16 of 24

Problem 7 continued.

8. (20 pts) Find and correctly classify all of the local minima, local maxima, and saddles of $f(x, y)=x^{2}+y^{2}-x^{2} y$.

62EF1084-D45C-4F24-BF77-99EDFA3E8033
final-section-002
\#1 18 of 24

Problem 8 continued.

9. (20 pts) Evaluate $\int_{C} x^{4} d x+(x+\cos y) d y$ with C the boundary of the rectangular region defined by $-2 \leq x \leq 2$ and $-3 \leq y \leq 2$, oriented clockwise.

F8CE374A-AC58-4443-929C-474E6A101FAA
final-section-002
\#1 20 of 24

Problem 9 continued.

10. (20 pts) Use Stokes' Theorem to evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}(x, y, z)=$ $2 z \mathbf{i}+3 x \mathbf{j}+4 y \mathbf{k}$ where C is the circle of radius 1 in the $x y$-plane centered at the origin and oriented counterclockwise when viewed from above the $x y$-plane. (Do not evaluate the line integral; you must evaluate the integral obtained via Stokes' Theorem.)

3CB09866－4C34－494C－94CA－E0F0B7D48F9E
final－section－002
\＃1 22 of 24

Problem 10 continued．

11. (20 pts) Consider the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ with $\mathbf{F}(x, y, z)=$ $2 x y \mathbf{i}+x e^{z} \mathbf{j}+z^{3} \mathbf{k}$ where S is the surface of the cylinder $y^{2}+z^{2}=4$ with $0 \leq x \leq 2$. (a) Parametrize this surface and write down (but do not evaluate) the iterated integrals for the surface integral.
(b) Let S^{\prime} be the closed surface with outward-facing normals obtained by taking the union of the surface S with the planes $x=0$ and $x=2$. Use the Divergence Theorem to evaluate the integral $\oiint_{S^{\prime}} \mathbf{F} \cdot d \mathbf{S}$.

69E8333C-880D-4332-8F4A-A2D74ECA3E1F
final-section-002
\#1 24 of 24

Problem 11 continued.

