
Math 233, Final Exam, Spring 2018

May 3rd, 2018

Last name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UNC E-MAIL (ONYEN) . . . . . . . . . . . . . . . .

• Closed book, closed notes, no calculators.

• Show photo ID when turning in exam.

• Partial credit is important—try all problems.

• Take integrals as far as you can analytically, leaving them as iterated
or definite integrals if you must.

• You must show full analytical work to receive full credit, even on the
multiple choice problems.

• By putting your name on your paper, you implicitly pledge your ad-
herence to the honor code.
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1. (10 pts) Let F(x, y, z) = 〈x cos(x2), zey
2

, z3〉.
Does there exist a function f(x, y, z) defined on all of R3 with F = ∇f?
Circle your answer and justify (show your work).
(a) Yes, such a function exists (and your work demonstrates why).
(b) No, such a function does not exist because F 6= 0.
(c) No, such a function does not exist because ∇× F 6= 0.
(d) No, such a function does not exist because ∇ · F 6= 0.
(e) Not enough information to determine.
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Problem 1 continued.
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2. (10 pts) Let F(x, y, z) = 〈yz cos(y2), xey, z3〉.
Does there exist a vector field G defined on all of R3 with F = ∇×G?
Circle your answer and justify.
(a) No, because ∇× F 6= 0.
(b) No, because ∇ · F 6= 0.
(c) No, because F(0, 0, 0) = 0.
(d) Yes, such a function exists (and your work demonstrates why).
(e) Not enough information to determine.
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Problem 2 continued.
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3. (10 pts) Let f(x, y, z) = x+ y3 + z2. Identify the unit vector pointing
in the direction in which f decreases fastest at the point (0, 1, 2).
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Problem 3 continued.
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4. (10 pts) Evaluate
´ 3
0

´ 9
x2 xe

−y2 dy dx by integrating over the same re-
gion with the order of the iterated integrals reversed.
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Problem 4 continued.
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5. (10 pts) Show that the vector field

F(x, y, z) = 〈yz + y cos(xy), xz + x cos(xy), xy + ez〉

is conservative and evaluate the integral
´
C F · dr where C follows a

curve along the paraboloid z = x2 + y2 from (0, 0, 0) to (1, 1, 2).
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Problem 5 continued.
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6. (20 pts) Consider the function z = f(x, y) = 4exy + xy.
(a) Compute the first partial derivatives of f with respect to x and y.
(b) At the point (1, 1), write the equation for the tangent plane to the
surface described by the function.
(c) What is the linear approximation to f at the point (1, 1)?
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Problem 6 continued.
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7. (20 pts) Consider the cone z2 = x2 + y2 between z = 0 and z = 1.
(a) Find the surface area of this cone.
(b) Find the volume of the region above this cone and inside the sphere
of radius

√
2 centered at the origin that encloses the cone.
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Problem 7 continued.
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8. (20 pts) Find and correctly classify all of the local minima, local
maxima, and saddles of f(x, y) = x2 + y2 − x2y.
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Problem 8 continued.
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9. (20 pts) Evaluate
´
C x4 dx + (x+cos y) dy with C the boundary of the

rectangular region defined by −2 ≤ x ≤ 2 and −3 ≤ y ≤ 2, oriented
clockwise.
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Problem 9 continued.
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10. (20 pts) Use Stokes’ Theorem to evaluate
¸
C F · dr for F(x, y, z) =

2zi+3xj+4yk where C is the circle of radius 1 in the xy-plane centered
at the origin and oriented counterclockwise when viewed from above
the xy-plane. (Do not evaluate the line integral; you must evaluate
the integral obtained via Stokes’ Theorem.)
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Problem 10 continued.
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11. (20 pts) Consider the surface integral
˜

S F · dS with F(x, y, z) =
2xyi + xezj + z3k where S is the surface of the cylinder y2 + z2 = 4
with 0 ≤ x ≤ 2. (a) Parametrize this surface and write down (but do
not evaluate) the iterated integrals for the surface integral.
(b) Let S ′ be the closed surface with outward-facing normals obtained
by taking the union of the surface S with the planes x = 0 and x = 2.
Use the Divergence Theorem to evaluate the integral

‚
S′ F · dS.
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Problem 11 continued.
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