McCombs Math 232 Test 1 Part 1 Fall 2019 Key

1. Consider the series $\sum_{n=1}^{\infty} a_{n}$ such that $a_{n}>0$, and $S_{n}=$ the n-th partial sum of the series. Complete each statement.
(6 points) (i) If $\lim _{n \rightarrow \infty}\left(S_{n}\right)=\frac{1}{3}$, then $\lim _{n \rightarrow \infty}\left(a_{n}\right)=0$
because
$\lim _{n \rightarrow \infty}\left(S_{n}\right)=\frac{1}{3}$ means that the series converges to the sum $\frac{1}{3}$, so $\lim _{n \rightarrow \infty}\left(a_{n}\right)$ MUST $=0$
(6 points) (ii) If $\lim _{n \rightarrow \infty}\left(a_{n}\right)=\frac{1}{2}$, then $\lim _{n \rightarrow \infty}\left(S_{n}\right)=$ does not exist
because $\lim _{n \rightarrow \infty}\left(a_{n}\right) \neq 0$ means the series MUST diverge.
(6 points) (iii) The series $\sum_{n=1}^{\infty}\left(\frac{|2 \cos (n)+3|}{n^{5}+2}\right)$

converges	diverges
(choose	one $)$

$a_{n}=\left(\frac{|2 \cos (n)+3|}{n^{5}+2}\right) \leq \frac{5}{n^{5}+2} \leq \frac{5}{n^{5}}=b_{n} \quad \sum_{n=1}^{\infty}\left(\frac{5}{n^{5}}\right)$ is a convergent p-series with $p=5>1$

McCombs Math 232 Test 1 Part 1 Fall 2019 Key

2. Answer each question for the series $\sum_{n=1}^{\infty}\left(\frac{6}{n(n+2)}\right)$.
(6 points) (i) Use the Limit Comparison Test to determine whether the series converges or diverges. You must show supporting work.

converges	diverges
(choose	one $)$

$$
\begin{gathered}
a_{n}=\frac{6}{n(n+2)} \approx \frac{6}{n^{2}}=b_{n} \quad \sum_{n=1}^{\infty}\left(\frac{6}{n^{2}}\right) \text { is a convergent } \mathrm{p} \text {-series with } p=2>1 \\
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{6}{n(n+2)}\right)\left(\frac{n^{2}}{6}\right) \rightarrow \frac{6 n^{2}}{6 n^{2}}=1>0 \text { and finite }
\end{gathered}
$$

(6 points) (ii) Determine the value of the partial sum S_{5}. You must show supporting work.

$$
S_{5}=\frac{6}{1 \cdot 3}+\frac{6}{2 \cdot 4}+\frac{6}{3 \cdot 5}+\frac{6}{4 \cdot 6}+\frac{6}{5 \cdot 7}=2+\frac{3}{4}+\frac{2}{5}+\frac{1}{4}+\frac{6}{35}
$$

(6 points) (iii) Determine the total sum of the series, if it exists. You must show supporting work.

$$
S=\lim _{n \rightarrow \infty}\left(S_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{3}{1}+\frac{3}{2}-\frac{3}{n+1}-\frac{3}{n+2}\right) \rightarrow 3+\frac{3}{2}-0-0=3+\frac{3}{2}=\frac{9}{2}
$$

$$
\sum_{n=1}^{\infty}\left(\frac{6}{n(n+2)}\right)=\sum_{n=1}^{\infty}\left(\frac{3}{n}-\frac{3}{n+2}\right)=\left(\frac{3}{1}-\frac{3}{3}\right)+\left(\frac{3}{2}-\frac{3}{4}\right)+\left(\frac{3}{3}-\frac{3}{5}\right)+\left(\frac{3}{4}-\frac{3}{6}\right)+\ldots
$$

$$
\frac{6}{n(n+2)}=\frac{A}{n}+\frac{B}{n+2} \quad \text { when } n=0: \quad 6=A(2)+B(0) \Rightarrow A=3
$$

$$
6=A(n+2)+B(n) \quad \text { when } n=-2: \quad 6=A(0)+B(-2) \Rightarrow B=-3
$$

$$
S_{1}=\left(\frac{3}{1}-\frac{3}{3}\right) \quad S_{2}=\left(\frac{3}{1}-\frac{3}{3}\right)+\left(\frac{3}{2}-\frac{3}{4}\right) \quad S_{3}=\left(\frac{3}{1}-\frac{3}{3}\right)+\left(\frac{3}{2}-\frac{3}{4}\right)+\left(\frac{3}{3}-\frac{3}{5}\right)=\frac{3}{1}+\frac{3}{2}-\frac{3}{4}-\frac{3}{5}
$$

$$
S_{4}=\frac{3}{1}+\frac{3}{2}-\frac{3}{4}-\frac{3}{5}+\left(\frac{3}{4}-\frac{3}{6}\right)=\frac{3}{1}+\frac{3}{2}-\frac{3}{5}-\frac{3}{6} \quad S_{n}=\frac{3}{1}+\frac{3}{2}-\frac{3}{n+1}-\frac{3}{n+2}
$$

(6 points) 3. Choose the best answer.

$$
\text { The series } \frac{\pi}{1}-\frac{\pi}{\sqrt[4]{2}}+\frac{\pi}{\sqrt[4]{3}}-\frac{\pi}{\sqrt[4]{4}}+\ldots=\pi \sum_{1}^{\infty}(-1)^{n+1}\left(\frac{1}{n^{1 / 4}}\right)
$$

converges conditionally
A
converges absolutely
B
diverges
C

$$
\text { because we have an alternating } \mathrm{p} \text {-series with } p=\frac{1}{4}<1 \text {. }
$$

4. Consider the series $\sum_{n=1}^{\infty}\left(\frac{5^{n}}{7^{n}-3^{n}}\right)$. Determine whether the given statement is TRUE or FALSE.
(4 points) (i) $\sum_{n=1}^{\infty}\left(\frac{5^{n}}{7^{n}-3^{n}}\right)$ converges by the Basic Comparison Test with $\sum_{n=1}^{\infty}\left(\frac{5^{n}}{7^{n}}\right)$
$a_{n}=\frac{5^{n}}{7^{n}-3^{n}}>\frac{5^{n}}{7^{n}}=b_{n} \quad \sum_{1}^{\infty} b_{n}=\underbrace{\sum_{1}^{\infty}\left(\frac{5}{7}\right)^{n}}_{\text {convergent geometric with } r=\frac{5}{7}}$
because Convergence by the Basic Comparison Test requires $a_{n} \leq b_{n}$, with $\sum_{n=1}^{\infty} b_{n}$ convergent.
But we have $a_{n}>b_{n}$, i.e., $\frac{5^{n}}{7^{n}-3^{n}}>\frac{5^{n}}{7^{n}}$ since $7^{n}-3^{n}<7^{n}$.
(4 points) (ii) $\sum_{n=1}^{\infty}\left(\frac{5^{n}}{7^{n}-3^{n}}\right)$ diverges by the Basic Comparison Test with $\sum_{n=1}^{\infty}\left(\frac{5^{n}}{7^{n}}\right)$.

TRUE	FALSE
(choose	one)

Divergence by the Basic Comparison Test requires $a_{n} \geq b_{n}$, with $\sum_{n=1}^{\infty} b_{n}$ divergent. because

$$
\text { But we have } \sum_{n=1}^{\infty} b_{n}=\quad \underbrace{\sum_{1}^{\infty}\left(\frac{5}{7}\right)^{n}}
$$

$$
\text { convergent geometric with } r=\frac{5}{7}
$$

5. Choose the best answer for each question.
(4 points) (i) The series $\sum_{n=1}^{\infty}\left(1+\frac{6}{n}\right)^{5 n}$
converges conditionally
A
converges absolutely
B
diverges
C
because $\lim _{n \rightarrow \infty}\left(a_{n}\right)=\lim _{n \rightarrow \infty}\left(1+\frac{6}{n}\right)^{5 n} \rightarrow e^{30} \neq 0$
(4 points) (ii) The series $\sum_{n=1}^{\infty}\left(\frac{(-2)^{10}}{n^{\pi}+\sqrt{n}}\right) \approx 2^{10} \cdot \sum_{n=1}^{\infty}\left(\frac{2^{10}}{n^{\pi}}\right)$
converges conditionally
A
converges absolutely
B
diverges
C
because it behaves like a p-series with $p=\pi>1$.

PART 2

(6 points) 1. Determine whether the given sequence converges or diverges. If it converges find the limit. You must show supporting work.

$$
\left(\frac{1+}{1}\right)^{5},\left(\frac{2+}{2}\right)^{10},\left(\frac{3+}{3}\right)^{15},\left(\frac{4+}{4}\right)^{20}, \ldots
$$

We have the sequence $\left\{\left(\frac{n+\pi}{n}\right)^{5 n}\right\}_{n=1}^{\infty} \quad \lim _{n \rightarrow \infty}\left(\frac{n+\pi}{n}\right)^{5 n}=\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{n}\right)^{5 n} \rightarrow e^{5 \cdot \pi}$

McCombs Math 232 Test 1 Part 1 Fall 2019 Key

converges		diverges
with limit $=e^{5 \cdot \pi}$		
	$($ choose one $)$	

(6 points) 2. Use the Ratio Test to determine whether the series converges or diverges. You must show supporting work.

$$
\sum_{n=1}^{\infty}\left(\frac{3^{n}}{5^{n+1}(n+4)}\right)
$$

converges	diverges
(choose	one)

because $\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)=\frac{3}{5}<1$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{3^{n+1}}{5^{n+2}(n+5)}\right)\left(\frac{5^{n+1}(n+4)}{3^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{5^{n+1}}{5^{n+2}}\right)\left(\frac{3^{n+1}}{3^{n}}\right)\left(\frac{n+4}{n+5}\right) \rightarrow\left(\frac{1}{5}\right)(3)(1)=\frac{3}{5}<1
\end{aligned}
$$

(6 points) 3 . Determine whether the series is absolutely convergent, conditionally convergent, or divergent. You must show supporting work.

$$
\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\sqrt{n^{6}+9 n+5}}{n^{4}+1}\right) \approx \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\sqrt{n^{6}}}{n^{4}}\right) \approx \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{n}\right)
$$

absolutely convergent	conditionally convergent (choose one)	divergent

4. Consider the series $\sum_{n=1}^{\infty}\left(\frac{x^{n}}{10^{n}}\right)$.
(6 points) (i) Determine the sum of the series when $x=5$.
You must show supporting work.

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(\frac{5^{n}}{10^{n}}\right)=\sum_{n=1}^{\infty}\left(\frac{5}{10}\right)^{n} \quad \text { geometric series with } r=\frac{1}{2} \text { and } a=\frac{1}{2} \\
\operatorname{sum}=\frac{a}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
\end{gathered}
$$

(6 points) (ii) Determine all values of x for which the series converges. You must show supporting work.

$$
\sum_{n=1}^{\infty}\left(\frac{x^{n}}{10^{n}}\right)=\sum_{n=1}^{\infty}\left(\frac{x}{10}\right)^{n} \quad \text { geometric series with } r=\frac{x}{10}
$$

The series converges provided that $|r|<1$.

$$
\left|\frac{x}{10}\right|<1 \Rightarrow-1<\frac{x}{10}<1 \Rightarrow-10<x<10
$$

5. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ such that $a_{n}>0$ and $b_{n}>0$. (6 points) (i) If the series $\sum_{n=1}^{\infty} a_{n}$ diverges, then the sequence $\left\{a_{n}\right\}_{1}^{\infty}$ MUST diverge also.

TRUE	FALSE
(choose	one $)$

$$
\text { because for example, } \sum_{1}^{\infty}\left(\frac{1}{n}\right) \text { diverges, but }\left\{\frac{1}{n}\right\}_{1}^{\infty} \text { converges to } 0 \text {. }
$$

(6 points) (ii) If the sequence $\left\{a_{n}\right\}_{1}^{\infty}$ converges, then the series $\sum_{n=1}^{\infty} a_{n}$ MUST converge also.
TRUE FALSE
(choose one)

$$
\text { because for example, }\left\{\frac{1}{n}\right\}_{1}^{\infty} \text { converges to } 0 \text {, but } \sum_{1}^{\infty}\left(\frac{1}{n}\right) \text { diverges. }
$$

BONUS

(4 points) Give SPECIFIC examples of series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$
so that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both diverge, but $\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right)$ converges.

$$
\sum_{n=1}^{\infty} a_{n}=\underbrace{\sum_{n=1}^{\infty} \frac{1}{n}}_{\begin{array}{c}
\text { divergent } \\
\text { harmonic series }
\end{array}} \quad \sum_{n=1}^{\infty} b_{n}=\underbrace{\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}}_{\begin{array}{c}
\text { divergent } \mathrm{p} \text {-series } \\
p=\frac{1}{2}<1
\end{array}}
$$

$$
\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n} \cdot \frac{1}{n^{1 / 2}}\right)=\underbrace{\sum_{n=1}^{\infty}\left(\frac{1}{n^{3 / 2}}\right)}_{\substack{\text { convergent } \mathrm{p} \text {-series } \\ p=\frac{3}{2}>1}}
$$

