KEY
Math 232 Practice Problems for Exam 1 (some topics may not be on your midterm)
McLaughlin
(1) Set up an integral to find the area bounded by the graphs of $y=2 x^{2}$ and $y=3-5 x$. Do not integrate.

$$
\int_{-3}^{3 / 2}\left(3-5 x-2 x^{2}\right) d x
$$

$$
2 x^{2}=3-5 x
$$

$$
2 x^{2}+5 x-3=0
$$

$$
(2 x-1)(x+3)=0
$$

$$
x=\frac{1}{2},-3
$$

(2) Set up an integral for the length of the arc of the hyperbola $x y=1$ from the point $(1,1)$ to $(2,1 / 2)$.

$$
\begin{aligned}
& 1 \leq x \leq 2 \\
& y^{\prime}=-\frac{1}{x^{2}}
\end{aligned}
$$

(3) Find the value of c such that the area of the region bounded by $y=c^{2}-x^{2}$ and the x-axis on $[0, c]$ is equal to the average value of $f(x)=3 x^{2}$ on $[0,2]$.
a) $\sqrt[3]{6}$

$$
\begin{aligned}
& =3 x^{2} \text { on }[0,2] . \\
& =\left(c^{2} x-\frac{x^{3}}{3}\right]_{0}^{c}\left(c^{2}-x^{2}\right) d x \\
& =\left(c^{3}-\frac{c^{3}}{3}\right)=\frac{2}{3} c^{3} \\
& \text { ave. value }=\frac{1}{2} \int_{0}^{2} 3 x^{2} d x \\
& \left.=\frac{3}{2}+\frac{x^{3}}{3}\right]_{0}^{2}=4
\end{aligned}
$$

b) $\sqrt[3]{12}$
c) $\sqrt[3]{24}$
d) $\sqrt[3]{8}$
e) $\sqrt[3]{18}$
$4=\frac{2}{3} c^{3}$ $6=c^{3}$
$c=\sqrt[3]{6}$
(4) Evaluate $\int_{1}^{4} \sqrt{x} \ln x d x$
a) $-\frac{7}{2} \ln 4-28$
b) $16 \ln 4-\frac{28}{3}$
(c) $\frac{16}{3} \ln 4-\frac{28}{9}$
d) $-\frac{7}{2}$
e) $\left.\frac{16}{3} \ln 4-\frac{7}{2}=\frac{16}{3} \ln 4-\frac{2}{3} \cdot \frac{2}{3} x^{3 / 2}\right]_{1}^{4}$

$$
=\frac{16}{3} \ln 4-\frac{4}{9}(7)=\frac{16}{3} \ln 4-\frac{28}{9}
$$

(5) Evaluate $\int \cos ^{-2} x \sin ^{3} x d x$
a) $-\sin x-\csc x+c$
b) $\frac{\cos ^{3} x}{3}-\sec x+c$
c) $\cos x+\frac{\sin ^{4} x}{4}+c$
d) $\cos x+\sec x+c$
e) $\frac{\cos x}{2}-\frac{\cos ^{5} x}{5}+c$

$$
-\int u^{-2}\left(1-u^{2}\right) d u=-\int\left(u^{-2}-1\right) d u
$$

$$
=u+\frac{1}{u}+c \Rightarrow \cos x+\frac{1}{\cos x} d x
$$

(6) Which definite integral is the area bounded by the graphs of $y=x^{2}-3$ and $y=15-x^{2} ?$
a) $\int_{-3}^{3}\left(12-2 x^{2}\right) d x$
b) $\int_{-15}^{15}\left(12-2 x^{2}\right) d x$
c) $\pi \int_{-3}^{3}\left(18-x^{2}\right)^{2} d x$
c) $\pi \int_{-3}^{3}\left(18-x^{2}\right)^{2} d x$
d) $\int_{-15}^{15}\left(18-2 x^{2}\right) d x=\int_{3}^{3}\left(18-2 x^{2}\right) d x$
(e) $\int_{-3}^{3}\left(18-2 x^{2}\right) d x=-3$
(7) Set up the integral to find the volume of the solid found by revolving the region bounded by $y=\sqrt{x}, x=0$ and $x=1$ about the line $x=1$. Do not integrate.

$$
\int_{0}^{1} \pi\left(1-y^{2}\right)^{2} d y
$$

(8) Which definite integral is the volume of the solid found by revolving the region bounded by $y=x-1, y=3-x$ and the x-axis about the y-axis?
a) $\pi \int_{1}^{3}\left(y^{2}-4 y+10\right) d y$
(b) $8 \pi \int_{0}^{1}(1-y) d y$

$$
\int_{0}^{1}\left[(3-y)^{2}-(y+1)^{2}\right] d y
$$

c) $\pi \int_{0}^{1}\left(1-8 y^{2}\right) d y \pi \int_{0}\left((3-y)^{2}-(y+1)^{2} d y\right.$

$$
\text { e) } \begin{aligned}
& 8 \pi \int_{0}^{1}(y-1) d y \\
& =\pi \int_{0}^{1}\left[\left(9-6 y+y^{2}\right)-\left(y^{2}+2 y+1\right)\right] d y \\
& = \\
& =\pi \int_{0}^{1}(8-8 y) d y
\end{aligned}
$$

$$
\pi \int_{0}^{1}\left(r^{2}-r^{2}\right) d y
$$

(9) Find the average value of $y=x \ln x$ on [1,5].
(a) $\frac{25}{8} \ln 5-\frac{3}{2}$
b) $25 \ln 5-\frac{3}{2}$

c) $8 \ln 4-\frac{5}{4}$
d) $\frac{25}{8} \ln 5$
e) $\frac{8}{3} \ln 4-\frac{5}{4}$
(10) The following integral represents the volume of a solid S. Describe S.

$$
\int_{0}^{1} e^{2 x} d x=\int_{0}^{1}\left(e^{x}\right)^{2} d x
$$

a) A solid obtained by rotating the region bounded by $y=e^{2 x}, x=0$ and $x=1$ about the x - axis.
b) A solid obtained by rotating the region bounded by $y=e^{x}, x=0$ and $x=1$ about the x - axis.
c) The base of S is the region bounded by $y=e^{2 x}, x=0$ and $x=1$. Cross sections perpendicular to the x-axis are squares.
d) The base of S is the region bounded by $y=e^{x}, x=0$ and $x=1$. Cross sections perpendicular to the x-axis are semicircles.
e) The base of S is the region bounded by $y=e^{x}, x=0$ and $x=1$. Cross sections perpendicular to the x-axis are squares.
(11) Find A.

$$
\int x \tan x \sec ^{2} x d x=\frac{x \tan ^{2} x}{2}-A
$$

By parts:
a) $A=2 \int \sec ^{2} x d x$
b) $A=\frac{1}{2} \int \tan ^{2} x d x$
c) $A=\frac{1}{2} \int \csc ^{3} x d x$
d) $A=2 \int x \cos x d x$
e) $A=2 \int \tan ^{2} x d x$

$$
u=x
$$

 $V=\frac{\tan ^{2} x}{2}$
using $u-\operatorname{sub}$! $u=\tan x$
(12) Evaluate $\int_{\pi / 6}^{\pi / 2} 5 \cos ^{3} x d x$, ${ }^{\text {r }}$ its of integration
a) $5 / 8$
b) $8 / 3$
(c) $5 / 24$
d) $25 / 24$
e) $25 / 8$

(13) Evaluating the integral $\int \frac{2 x-3}{x^{3}+3 x} d x$ using partial fraction decomposition would result in the sum of integrals $\int \frac{A}{x+E} d x+\int \frac{B x+C}{x^{2}+D} d x$ where constants A, B, C, D, E sum to:
a) 4
b) 7

$$
\frac{2 x+3}{x\left(x^{2}+3\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+3}
$$

(c) 5

$$
2 x+3=A\left(x^{2}+3\right)+(B x+C) x
$$

d) 2
e) 3

$$
x=0 \Rightarrow 3=3 A, A=1
$$

$$
\begin{aligned}
& \text { te linear } \\
& \text { co eft }
\end{aligned} \Rightarrow 2=C^{\prime}
$$

Equate linear $\Rightarrow 2=C$
(14) Evaluate $\int \tan ^{2}(3 x) d x$

$$
\begin{aligned}
& \int\left(\sec ^{2}(3 x)-1\right) d x \\
& =\frac{1}{3} \tan (3 x)-x+c
\end{aligned}
$$

(15) Evaluate $\int \cos ^{3}(x) \sin ^{6}(x) d x$

$$
\begin{aligned}
& \int_{\int} \cos ^{2} x \sin ^{6} x \cos x d x \\
& u=\sin x \\
& d u=\cos x d x \\
& \int\left(1-u^{2}\right) u^{6} d u=\int\left(u^{6}-u^{8}\right) d u \\
& =\frac{u^{7}}{7}-\frac{u^{9}}{9}+c \Rightarrow \frac{\sin ^{7} x}{7}-\frac{18 \sin ^{9} x}{9}+c
\end{aligned}
$$

(16) Consider solving the integral $\int \sqrt{4-x^{2}} d x$. After making the appropriate trigonometric substitution, which integral must be solved to complete the solution?
a) $16 \int \cos ^{2} \theta d \theta$
b) $4 \int \sin \theta \cos \theta d \theta$
c) $4 \int \cos ^{2} \theta d \theta$
d) $2 \int \tan ^{2} \theta d \theta$
e) $16 \int \tan \theta \sin \theta d \theta$

$$
=\int \frac{2 \sqrt{1-\sin ^{2} \theta}}{\cos ^{2} \theta}(2 \cos \theta) d \theta=4 \int \cos ^{2} \theta d \theta
$$

$\int=4 \int \frac{1}{2}(1+\cos 2 \theta) d \theta=2\left(\theta+\frac{1}{2} \sin 2 \theta\right)+c$

$$
\sin \theta=\frac{x}{2} \Rightarrow \text { use } \sin 2 \theta=
$$

True or False for problems \#17, 18
(17) There exist constants A and B such that $\frac{x\left(x^{2}+4\right)}{x^{2}-4}=\frac{A}{x+2}+\frac{B}{x-2}$.

Degree of numerator $>$ degree demomindor
(18) Integrating the parabola $y=x^{2}-4$ from $x=-2$ to $x=2$ is equivalent to finding the area bounded by $y=x^{2}$ and $y=4$.
(19) Evaluate $\int x \cos ^{2}(x) d x$

$$
\begin{aligned}
& \int x\left(\frac{1}{2}(1+\cos 2 x)\right) d x \\
= & \frac{1}{2} \int(x+\underbrace{v=\frac{1}{2} \sin 2 x}_{\left.\left.\begin{array}{c}
u=x \\
d u=d v \\
d u
\end{array}\right) \cos 2 x\right) d x} \\
= & \frac{1}{2}\left(\frac{x^{2}}{2}+\frac{x}{2} \sin 2 x+\frac{1}{4} \cos 2 x\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{x}{2} \sin (2 x)-\frac{1}{2} \underbrace{\sin 2 x d x}_{-\frac{1}{2} \cos 2 x} \\
& \cos 2 x)+c
\end{aligned}
$$

(20) Evaluate $\int x \sqrt{16+x^{2}} d x$

$$
\begin{aligned}
& x=4 \tan \theta \\
& d x=4 \sec ^{2} \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \int 4 \tan \theta \sqrt{16+16 \tan ^{2} \theta}\left(4 \sec ^{2} \theta\right) d \theta \\
= & 64 \int \tan \theta(\sec \theta) \sec ^{2} \theta d \theta=64 \int \sec ^{3} \theta \tan \theta d \theta
\end{aligned}
$$

$$
\begin{gathered}
=64 \int \sec ^{2} \theta \sec \theta \tan \theta d \theta \\
u=\sec \theta
\end{gathered}
$$

$$
\begin{gathered}
u=\sec \theta \\
d u=\sec \theta
\end{gathered}
$$

$$
\begin{aligned}
& u=\sec \theta \\
& d u=\sec \theta \tan \theta d \theta \\
& 3
\end{aligned}
$$

$$
\Rightarrow 64 \int \begin{aligned}
& d u=\sec \theta \tan \theta d \theta \\
& u^{2} d u=\frac{64}{3} u^{3}+c \Rightarrow \frac{64}{3} \sec ^{3} \theta d \theta \\
& \left.x^{2}+\sqrt{x^{2}+16} \rightarrow 64 / \sqrt{x^{2}+6}\right)^{3}
\end{aligned}
$$

$$
14 \int u^{2} d u=\frac{64}{3} u+6=\frac{\sqrt{x^{2}+16}}{4} \Rightarrow \frac{64}{3}\left(\frac{\sqrt{x^{2}+6}}{4}\right)^{3}+c
$$

(21) Using the Partial Fraction Decomposition method, express the integral $\int \frac{x+2}{(x-3)^{2}} d x$ as a sum of integrals $\int \frac{A}{(x-3)} d x+\int \frac{B}{(x-3)^{2}} d x$. Find A and B. Show all work for credit. Do not integrate.
\qquad
$B=5$

$$
\begin{aligned}
& \frac{x+2}{(x-3)^{2}}=\frac{A}{(x-3)}+\frac{B}{(x-3)^{2}} \\
& x+2=A(x-3)+B \\
& x=3 \Rightarrow B=5 \\
& x A+5
\end{aligned}
$$

Equate constants $2=3 A+5$ $A=-1$

Use the following figure for problems \#22 and \#23.

(22) The volume of the solid generated by revolving the area bounded by $f(x)$ and $g(x)$ about the line $y=2$ is equal to:
a) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[\left(2-g\left(x_{i}^{*}\right)\right)^{2}-\left(2-f\left(x_{i}^{*}\right)\right)^{2}\right] \Delta x$
b) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[\left(g\left(x_{i}^{*}\right)\right)^{2}-\left(f\left(x_{i}^{*}\right)\right)^{2}\right] \Delta x$
c) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[\left(2+g\left(x_{i}^{*}\right)\right)^{2}-\left(2+f\left(x_{i}^{*}\right)\right)^{2}\right] \Delta x$
d) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[\left(g\left(x_{i}^{*}\right)\right)^{2}-\left(2-f\left(x_{i}^{*}\right)\right)^{2}\right] \Delta x$
e) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[\left(2-g\left(x_{i}^{*}\right)\right)^{2}-\left(f\left(x_{i}^{*}\right)\right)^{2}\right] \Delta x$
(23) The base of a solid S is the region bounded by $f(x)$ and $g(x)$. Cross-sections perpendicular to the x - axis are squares. Which of the following is the volume of S.
a) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x$
b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x$
c) $\lim _{n \rightarrow \infty} 2 \pi \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)^{2}-g\left(x_{i}^{*}\right)^{2}\right] \Delta x$
d) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right]^{2} \Delta x$
e) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) g\left(x_{i}^{*}\right) \Delta x$

$f-g$

$$
\text { area }=(f-g)^{2}
$$

Use the following figure for problems \#24 and \#25.

(24) The area bounded by the graphs of $y=f(x)$ and $y=g(x)$ is equal to:
a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \pi\left(g\left(x_{i}^{*}\right)-f\left(x_{i}^{*}\right)\right)^{2} \Delta x$
b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right) \Delta x$
(c) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(g\left(x_{i}^{*}\right)-f\left(x_{i}^{*}\right)\right) \Delta x$
d) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \pi\left(g\left(x_{i}^{*}\right)^{2}-f\left(x_{i}^{*}\right)^{2}\right) \Delta x$

e) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \pi\left(f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right)^{2} \Delta x$
(25) The volume of the solid generated by revolving the area bounded by the graphs of $y=f(x)$ and $y=g(x)$ about the line $y=-2$ is equal to:
a) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left(g\left(x_{i}^{*}\right)-f\left(x_{i}^{*}\right)+2\right)^{2} \Delta x$
b) $\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left[\left(g\left(x_{i}^{*}\right)-2\right)^{2}-\left(f\left(x_{i}^{*}\right)-2\right)^{2}\right] \Delta x$

$$
\begin{aligned}
& R=g+2 \\
& r=f+2
\end{aligned}
$$

(26) A tank in the shape of a right circular cone is full of water. If the height of the tank is 12 feet and the radius of the top is 3 feet, which integral is the work done in pumping the) water to a height 10 feet above the top of the tank. (Water weighs 62.4 pounds per cubic foot.) Let $\delta=62.4$
a) $\frac{\delta \pi}{16} \int_{0}^{22}\left(22 x^{2}-x^{3}\right) d x$
b) $\frac{\delta \pi}{16} \int_{0}^{12}\left(12 x^{2}-x^{3}\right) d x$
c) $\delta \pi \int_{0}^{22}\left(x^{3}-12\right) d x$
d) $10 \delta \pi \int_{0}^{12}\left(12 x^{2}-x^{3}\right) d x$
(e) $\frac{\delta \pi}{16} \int_{0}^{12}\left(22 x^{2}-x^{3}\right) d x$

3

$F_{i}=\uparrow$ weight $=$ volume $_{i}(62,4)$
volume $_{i}=\pi r_{i}^{*} \Delta x$

