- Please use the scantron for multiple choice. Since you have test version A, please code the SEQUENCE NUMBER on the scantron as 111111 (all 1's).
- No calculators allowed.
- No partial credit on multiple choice.
- For short answer questions, you must show work for full and partial credit. For short answer questions, all work to be graded needs to go on the test.
- Give exact values instead of decimal approximations unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last namelkey

PID \qquad

Instructor (circle one):
Linda Green Elizabeth McLaughlin Lev Rozansky David Rose

Recitation TA (circle one):
Marc Besson Gonzalo Cazes-Nasitiqui Robert Hunt
Samuel Jeralds Claire Kiers Logan Tathan

Honor Pledge: I have neither given nor received unauthorized help on this exam.

Signature: \qquad

1. (2 pts) True or False: If the velocity of a particle is given by $v(t)=9-t^{2}$, then $\int_{0}^{5} v(t) d t$ represents the total distance traveled by the particle between time $t=0$ and $t=5$.
A. True
(B.) False
2. (2 pts) True or False: If $\lim _{t \rightarrow 0} f(x)=5$, then $\lim _{t \rightarrow 0} \frac{f(x)}{x^{2}}$ must be ∞.
(A.) True
B. False
3. (4 pts) For what value of a is the following function continuous?

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { for } x<3 \\ a x^{2}+x-6 & \text { for } x \geq 3\end{cases}
$$

A. $a=\frac{1}{3} \quad \lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x+3)(x-3)}{(x-3)}=\lim _{x \rightarrow 3^{-}} x+3=6$
C. $a=3 \quad \lim _{x \rightarrow 3^{+}} a x^{2}+x-6=a \cdot 9+3-6=9 a-3$
E. There is no value of a that will make this function continuous.

Set $9 a-3=6 \Rightarrow 9 a=9 \Rightarrow a=1$
4. $(4 \mathrm{pts})$ Find $\lim _{x \rightarrow 0}$
A. $-\frac{1}{3}$
B. 0
C. $\frac{1}{3}$
(D.) $\frac{4}{3}$
E. $\mathrm{DNE}=\frac{4}{1+2}=\frac{4}{3}$
for $x<1 \quad x-1<0$
5. (4 pts) Find $\lim _{x \rightarrow 1^{-}} \frac{4 x^{2}+x-5}{|x-1|}$
so $|x-1|=-(x-1)$
(A) -9
$\begin{aligned} & \text { B. }-3 \\ & \text { C. } 0\end{aligned}=\lim _{x \rightarrow 1^{-}} \frac{4 x^{2}+x-5}{-(x-1)}=\lim _{x \rightarrow 1^{-}} \frac{(4 x+5)(x-1)}{-(x-1)}$
D. 9
E. $\infty \quad=\lim _{x \rightarrow 1^{-}} \frac{(4 x+5)}{(-1)}=-9$
6. $(4 \mathrm{pts})$ Find $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+x-5}}{x}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(4+\frac{1}{x}-\frac{5}{x^{2}}\right)}}{x}$
A. 0
B. 1
C. 2
D. 4
E. ∞

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{4+\frac{1}{x}-\frac{5}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow \infty} \frac{x \sqrt{4+\frac{1}{x}-\frac{5}{x^{2}}}}{x}=2
\end{aligned}
$$

7. (4 pts) Suppose that $h(x)=\sqrt{f(x)} \cdot \ln (g(x))$. Use the fact that $f(5)=4, f^{\prime}(5)=16$, $g(5)=2, g^{\prime}(5)=4$ to find $h^{\prime}(5)$.
A. $1+4 \ln 2 \quad h^{\prime}(x)=\frac{1}{2}(f(x))^{-1 / 2} \cdot f^{\prime}(x) \cdot \ln (g(x))$
(B.) $4+4 \ln 2$

$$
+\sqrt{f(x)} \cdot \frac{1}{g(x)} \cdot g^{\prime}(x)
$$

D. $8+\ln 2$

$$
h^{\prime}(5)=\frac{1}{2}(4)^{-1 / 2} \cdot 16 \cdot \ln (2)+\sqrt{4} \cdot \frac{1}{2} \cdot 4
$$

$$
=4 \ln (2)+4
$$

8. (4 pts) What is the absolute MINIMUM value of $f(x)=(x-2)^{3}+100$ on the interval $[-2,4]$?
A. $0 \quad f^{\prime}(x)=3(x-2)^{2}=0 \Rightarrow x=2$
B. 12
C. 36
D. 48
E. 100

x	$f(x)$
-2	$(-4)^{3}+100=36$
2	$0^{3}+100=100$
4	$2^{3}+100=108$

9. (4 pts) Find the slope of the tangent line to $\frac{x}{y^{2}}+\frac{x^{2}}{8}=3$ at the point $(4,2)$.
A. $-\frac{1}{4}$

$$
\frac{y^{2} \cdot 1-x \cdot 2 y \frac{d y}{d x}}{y^{4}}+\frac{2 x}{8}=0
$$

B. $-\frac{3}{8}$
C. 4
D. $\frac{4}{3}$
E. $\frac{9}{4}$

$$
\Rightarrow-2 x y \frac{d y}{d x}=\frac{-x y^{4}}{4}-y^{2} \Rightarrow \frac{d y}{d x}=\frac{\frac{-x y^{4}}{4}-y^{2}}{-2 x y}
$$

$$
\left.\frac{d y}{d x}\right|_{(4,2)}=\frac{-16-4}{-16}=\frac{-20}{-16}=\frac{5}{4}
$$

10. (4 pts) A function of the form $f(x)=\frac{a}{x^{2}+b x}$ has a local extreme point (max or min point) at $(2,3)$. Find the value of b.

C. $b=0$
D. $b=2 \quad \Rightarrow-a(2 x+b)=0 \quad \Rightarrow 2 x+b=0$
E. Cannot be determined from this information.
$\Rightarrow x=-\frac{b}{2}=2$
$\Rightarrow \quad b=-4$
11. (4 pts) Which of the following limits represents $f^{\prime}(3)$ if $f(x)=\ln (x+4)$?
1) $\lim _{h \rightarrow 0} \frac{\ln (3+h)-\ln (3)}{h}$
(2) $\lim _{h \rightarrow 0} \frac{\ln (7+h)-\ln (7)}{h}$
(3) $\lim _{x \rightarrow 3} \frac{\ln (x+4)-\ln (7)}{x-3}$
A. 1,2
B. 1,3
(C.) 2,3
D. All of them.
E. None of them.
12. (4 pts) If $g(x)=\int_{\pi / 2}^{x} \sqrt{\sin (t)+5} d t$, find $g^{\prime}(2 \pi)$.
(A.) $\sqrt{5}$
B. $\sqrt{5}-\sqrt{6} \quad g^{\prime}(x)=\sqrt{\sin (x)+5}$
C. $\frac{1}{2}$
D. $\frac{1}{2 \sqrt{5}}$
E. $\frac{1}{2 \sqrt{6}}$
13. (7 pts) Josie is blowing up a balloon. The rate at which she blows air into the balloon at time t is $f(t) \mathrm{cm}^{3}$ per second, graphed below. When $t=0$, the balloon is empty. How many cm^{3} of air are in the balloon at time $t=2$ seconds?

A. 10
B. 20
C. 30
(C). 40
E. Cannot be determined from this information.
14. (4 pts) Which integral is equal to $\int_{0}^{1} x^{2} \sqrt{x^{2}+3} d x$? Hint: use u-substitution.
A. $\int_{0}^{1}(u-3) \sqrt{u} d u$

$$
u=x^{2}+3 \quad x^{2}=u-3
$$

B. $\int_{3}^{4}(u-3) \sqrt{u} d u$ $x=\sqrt{u-3}$
C. $\frac{1}{2} \int_{0}^{1} \sqrt{u-3} \sqrt{u} d u$
$\frac{1}{2} d u=x d x$
(D. $\frac{1}{2} \int_{3}^{4} \sqrt{u-3} \sqrt{u} d u$
E. $\int_{3}^{4} u^{2} \sqrt{u} d u$
$\int_{0}^{1} x \sqrt{x^{2}+3} x d x=\int_{3}^{4} \sqrt{u-3} \sqrt{u} \frac{1}{2} d u$
15. (4 pts) Find y^{\prime} if $y=x^{\arctan (x)}$.
A. $y^{\prime}=\arctan (x) x^{\arctan (x)-1}$
B. $y^{\prime}=\frac{\arctan (x)}{x}+\frac{\ln (x)}{1+x^{2}}$
C. $y^{\prime}=x^{\arctan (x)} \ln (x)$
D. $y^{\prime}=x^{\arctan (x)}\left(\arctan (x)+\frac{x}{1+x^{2}}\right)$
E. $y^{\prime}=x^{\arctan (x)}\left(\frac{\arctan (x)}{x}+\frac{\ln (x)}{1+x^{2}}\right)$

$$
\ln y=\ln x^{\arctan (x)}
$$

$$
\ln y=\arctan (x) \ln x
$$

$\frac{1}{y} y^{\prime}=\frac{1}{1+x^{2}} \ln x+\arctan (x) \cdot \frac{1}{x}$

$$
y^{\prime}=y\left[\frac{\ln x}{1+x^{2}}+\frac{\arctan (x)}{x}\right]
$$

$$
y^{\prime}=x^{\operatorname{arctanc}(x)}\left[\frac{\ln x}{1+x^{2}}+\frac{\arctan (x)}{x}\right]
$$

16. (7 pts) A large piece of ice in the shape of a perfect cube is melting. Its volume is decreasing at a rate of $60 \mathrm{~cm}^{3}$ per minute. Find the rate at which its surface area is decreasing when its side length is 10 cm .

$$
\begin{align*}
& v=x^{3} \\
& A=6 x^{2} \tag{+}\\
& \frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \tag{10}\\
& \frac{d A}{d t}=12 x \frac{d x}{d t} \\
& -60=3 \cdot 10^{2} \cdot \frac{d x}{d t} \\
& \Rightarrow \frac{d x}{d t}=\frac{-60}{300}=-\frac{1}{5} \tag{18}\\
& \frac{d A}{d t}=12 \cdot 10 \cdot\left(-\frac{1}{5}\right) \\
& =\frac{-120}{5}=-24
\end{align*}
$$

OR

$$
\begin{aligned}
& V=S^{3} \text { (lat) } A=6 S^{2}=6\left(V^{1 / 3}\right)^{2}=6 v^{2 / 3} \\
& \frac{d A}{d t}=6 \cdot \frac{2}{3} V^{-1 / 3} \frac{d V}{d t}=\frac{4}{V^{1 / 3}} \frac{d V}{d t}=\frac{4}{\left(10^{3}\right)^{1 / 3}} \cdot(-30) \\
& =\frac{-120}{10}=-12
\end{aligned}
$$

$$
24 \mathrm{~cm}^{2} / \mathrm{min}
$$

17. (8 pts) Consider the function $f(x)=1+\sqrt{x}$.
(a) Find the linear approximation for $f(x)$ at $a=1$.

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
& f^{\prime}(1)=\frac{1}{2} 1^{-1 / 2}=\frac{1}{2} \\
& f(1)=1+\sqrt{1}=2
\end{aligned}
$$

(b) In order to use this linear approximation to approximate the number $1+\sqrt{0.7}$, nov what value of x would you plug into your answer from (a)?

$$
x=0
$$

(c) Approximate $1+\sqrt{0.7}$

$$
L(0.7)=\frac{1}{2} \cdot 0.7+\frac{3}{2}=0.35+1.5=1.85
$$

Answer:
\square
1.85

(d) Which graph represents the function $f(x)=1+\sqrt{x}$ and its linearization?
A.

B.

D.

(e) Is your estimate in part (c) an overestimate or an underestimate of the actual value of of $1+\sqrt{0.95}$?
A. Overestimate
B. Underestimate

$$
\begin{aligned}
& \int 2 p^{t k} \text { slope }
\end{aligned}
$$

18. (8 pts) A particle is moving with the given data. Find a formula for the position of the particle. Note: $a(t)$ is acceleration, $v(t)$ is velocity, and $s(t)$ is position.

$$
\begin{aligned}
& a(t)=\sin (t)+3 \cos (t), s(0)=0, v(0)=2 \\
& v(t)=-\cos (t)+3 \sin (t)+C \\
& 2=v(0)=-\cos (0)+3 \sin (0)+C \Rightarrow 2=-1+C \Rightarrow C=3 \\
& v(t)=-\cos (t)+3 \sin (t)+3 \\
& s(t)=-\sin (t)-3 \cos (t)+3 t+D \\
& 0=s(0)=-\sin (0)-3 \cos (0)+3 \cdot 0+D \Rightarrow 0=-3+D \Rightarrow D=3 \\
& s(t)=-\sin (t)-3 \cos (t)+3 t+3
\end{aligned}
$$

-1 for err

\rightarrow for wave of orestre-t ache of -1 for incorrect ${ }^{2}$ constant

$$
s(t)=-\sin (t)-3 \cos (t)+3 t+3
$$

19. (7 pts) The town of Chapel Hill plans to build a park, that will be fenced in with two types of fencing as shown. The fencing costs $\$ 3$ per linear foot for the cheaper fence (dotted lines) and $\$ 5$ per linear foot for the more expensive fence (solid line). Assuming the town can spend no more than $\$ 4800$ on fencing, what dimensions should be used to build a park with the largest possible area? Use calculus in your solution.

$$
\begin{aligned}
\text { Cost } & =3 w+3 L+3 w+5 L \\
& =6 w+8 L=4800
\end{aligned}
$$

$$
A=w \cdot L
$$

$$
L=\frac{4800-6 \omega}{8}=600-\frac{3}{4} \omega
$$

(10) $A=\omega\left(600-\frac{3}{4} \omega\right)=600 \omega-\frac{3}{4} \omega^{2}$

$$
\begin{aligned}
& \text { 1. pt) } A=\omega\left(600-\frac{3}{4} \omega\right) \quad A^{\prime}=600-\frac{3}{2} \omega=0 \Rightarrow 600=\frac{3}{2} \omega \\
& \left(1 c^{+} \omega\right) \\
&
\end{aligned}
$$

$$
\Rightarrow w=\frac{1200}{3}=400
$$

$$
\Rightarrow L=600-\frac{3}{4} \cdot 400=300
$$

$$
A^{\prime \prime}=-\frac{3}{2}<0
$$

concave down

20. (7 pts) Compute $\int \frac{5 \sqrt{x}}{\sqrt{x}} d x$

$$
\begin{aligned}
u & =\sqrt{x} \\
d u & =\frac{1}{2} x^{-1 / 2} d x=\frac{1}{2} \cdot \frac{1}{\sqrt{x}} d x \\
& \Rightarrow 2 d u=\frac{1}{\sqrt{x}} d x \\
& =\int 5^{u} \cdot 2 d u \\
& =\frac{5^{u} \cdot 2}{\ln (5)}+C \\
& =\frac{2 \cdot 5^{\sqrt{x}}}{\ln (5)}+C
\end{aligned}
$$

2 pts (-1 if forget factors of 2 , or forget to write du or both)

I pt anti-deris

1 pt substitute bach in for x

$$
\text { Answer: } \frac{2}{\ln (5)} \cdot 5^{\sqrt{x}}+c
$$

21. (7 pts) Sketch the graph of a function defined on $(-\infty, \infty)$ with exactly one discontinuity that satisfies:

- $f(2)=3$
- $\lim _{x \rightarrow-\infty} f(x)=1$ and $\lim _{x \rightarrow \infty} f(x)=0$
- $\lim _{x \rightarrow 0} f(x)=-\infty$
- $f^{\prime}(x)<0$ for $x<0$ and $x>2$ and $f^{\prime}(x)>0$ for $0<x<2$
- $f^{\prime \prime}(x)<0$ for $x<0$ and $0<x<3$ and $f^{\prime \prime}(x)>0$ for $x>3$
 this was supposed to say $x \geq 3$

Alternation answer if last statement is interpreted as
$1 p^{t}$ horiz asymptote on left side 1 pt horiz asymptote on right side 1 pt $f(2)=3$
2 pts correct shape on left side (con give portal credit) 2 pts correct shape un right side (can give partial credit) -1 if morethon one discontinuity, or graph is nut a function

