- Please use the scantron for multiple choice. Since you have test version A, please code the SEQUENCE NUMBER on the scantron as 111111 (all 1's).
- No calculators allowed.
- No partial credit on multiple choice.
- For short answer questions, you must show work for full and partial credit. For short answer questions, all work to be graded needs to go on the test.
- Give exact values instead of decimal approximations unless otherwise specified.
- Sign the honor pledge below after completing the exam.

First and last nan	ne		
PID			
Instructor (circle	one):		
Linda Green	Elizabeth McLaughli	n Lev Rozans	sky David Rose
Recitation TA (cir	rcle one):		
Marc Besson	Gonzalo Cazes-Nasit	iqui Robert H	Hunt
Samuel Jeralds	Claire Kiers	Logan Tathan	
Honor Pledge: I l	nave neither given nor	received unauthori	zed help on this exam.
Signature:			

- 1. (2 pts) True or False: If the velocity of a particle is given by $v(t) = 9 t^2$, then $\int_0^5 v(t) dt$ represents the total distance traveled by the particle between time t = 0 and t = 5.
 - A. True
 - B. False
- 2. (2 pts) True or False: If $\lim_{t\to 0} f(x) = 5$, then $\lim_{t\to 0} \frac{f(x)}{x^2}$ must be ∞ .
 - A. True
 - B. False
- 3. (4 pts) For what value of *a* is the following function continuous?

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{for } x < 3\\ ax^2 + x - 6 & \text{for } x \ge 3 \end{cases}$$

- A. $a = \frac{1}{3}$
- B. a = 1
- C. a = 3
- D. a = 6
- E. There is no value of *a* that will make this function continuous.
- 4. (4 pts) Find $\lim_{x \to 0} \frac{\tan(4x)}{x + \sin(2x)}$
 - A. $-\frac{1}{3}$
 - B. 0
 - C. $\frac{1}{3}$
 - D. $\frac{4}{3}$
 - E. DNE

- 5. (4 pts) Find $\lim_{x\to 1^-} \frac{4x^2 + x 5}{|x 1|}$
 - A. -9
 - B. -3
 - C. 0
 - D. 9
 - E. ∞
- 6. (4 pts) Find $\lim_{x \to \infty} \frac{\sqrt{4x^2 + x 5}}{x}$
 - A. 0
 - B. 1
 - C. 2
 - D. 4
 - E. ∞
- 7. (4 pts) Suppose that $h(x) = \sqrt{f(x)} \cdot \ln(g(x))$. Use the fact that f(5) = 4, f'(5) = 16, g(5) = 2, g'(5) = 4 to find h'(5).
 - A. $1 + 4 \ln 2$
 - B. $4 + 4 \ln 2$
 - C. $4 + \frac{1}{4} \ln 2$
 - D. $8 + \ln 2$
 - E. 8 ln 2
- 8. (4 pts) What is the absolute MINIMUM value of $f(x) = (x 2)^3 + 100$ on the interval [-2,4]?
 - A. 0
 - B. 12
 - C. 36
 - D. 48
 - E. 100

- 9. (4 pts) Find the slope of the tangent line to $\frac{x}{v^2} + \frac{x^2}{8} = 3$ at the point (4, 2).
 - A. $-\frac{1}{4}$
 - B. $-\frac{3}{8}$
 - C. $\frac{5}{4}$
 - D. $\frac{4}{3}$ E. $\frac{9}{4}$
- 10. (4 pts) A function of the form $f(x) = \frac{a}{x^2 + bx}$ has a local extreme point (max or min point) at (2,3). Find the value of b.
 - A. b = -4
 - B. b = -2
 - C. b = 0
 - D. b = 2
 - E. Cannot be determined from this information.
- 11. (4 pts) Which of the following limits represents f'(3) if $f(x) = \ln(x + 4)$?

 - 1) $\lim_{h \to 0} \frac{\ln(3+h) \ln(3)}{h}$ 2) $\lim_{h \to 0} \frac{\ln(7+h) \ln(7)}{h}$ 3) $\lim_{x \to 3} \frac{\ln(x+4) \ln(7)}{x-3}$
 - A. 1, 2
 - B. 1,3
 - C. 2, 3
 - D. All of them.
 - E. None of them.

- 12. (4 pts) If $g(x) = \int_{\pi/2}^{x} \sqrt{\sin(t) + 5} dt$, find $g'(2\pi)$.
 - A. $\sqrt{5}$
 - B. $\sqrt{5} \sqrt{6}$
 - C. $\frac{1}{2}$
 - D. $\frac{1}{2\sqrt{5}}$
 - E. $\frac{1}{2\sqrt{6}}$
- 13. (7 pts) Josie is blowing up a balloon. The **rate** at which she blows air into the balloon at time t is f(t) cm^3 per second, graphed below. When t = 0, the balloon is empty. How many cm^3 of air are in the balloon at time t = 2 seconds?

- A. 10
- B. 20
- C. 30
- D. 40
- E. Cannot be determined from this information.

- 14. (4 pts) Which integral is equal to $\int_0^1 x^2 \sqrt{x^2 + 3} dx$? Hint: use u-substitution.
 - A. $\int_0^1 (u-3) \sqrt{u} \, du$
 - B. $\int_{3}^{4} (u-3) \sqrt{u} \, du$
 - C. $\frac{1}{2} \int_{0}^{1} \sqrt{u-3} \sqrt{u} \, du$
 - D. $\frac{1}{2} \int_{3}^{4} \sqrt{u-3} \sqrt{u} \, du$
 - $E. \int_3^4 u^2 \sqrt{u} \ du$
- 15. (4 pts) Find y' if $y = x^{\arctan(x)}$. (You can assume x > 0.)
 - A. $y' = \arctan(x)x^{\arctan(x)-1}$
 - B. $y' = \frac{\arctan(x)}{x} + \frac{\ln(x)}{1 + x^2}$
 - C. $y' = x^{\arctan(x)} \ln(x)$
 - D. $y' = x^{\arctan(x)} \left(\arctan(x) + \frac{x}{1 + x^2} \right)$
 - E. $y' = x^{\arctan(x)} \left(\frac{\arctan(x)}{x} + \frac{\ln(x)}{1 + x^2} \right)$

16.	decreasing	arge piece of ice at a rate of 60 co area is changing	n^3 per minut	e. Find the abso	cube is melting. olute value of the m.	Its volume is e rate at which
	_					
	Answer:		cm	² /min		

- 17. (8 pts) Consider the function $f(x) = 1 + \sqrt{x}$.
 - (a) Find the linear approximation for f(x) at a = 1.

T / \	
$I_{\cdot}(x) =$	
1 A X 1 —	

(b) In order to use this linear approximation to approximate the number $1 + \sqrt{0.7}$, what value of x would you plug into your answer from (a)?

$$x =$$

(c) Approximate $1 + \sqrt{0.7}$

Answer:

(d) Which graph represents the function $f(x) = 1 + \sqrt{x}$ and its linearization?

- (e) Is your estimate in part (c) an overestimate or an underestimate of the actual value of of $1 + \sqrt{0.7}$?
 - A. Overestimate
 - B. Underestimate

18. (8 pts) A particle is moving with the given data. Find a formula for the position of the particle. Note: a(t) is acceleration, v(t) is velocity, and s(t) is position.

$$a(t) = \sin(t) + 3\cos(t), s(0) = 0, v(0) = 2$$

$$s(t) =$$

- 19. (7 pts) The town of Chapel Hill plans to build a park, that will be fenced in with two types of fencing as shown. The fencing costs \$3 per linear foot for the cheaper fence (dotted lines) and \$5 per linear foot for the more expensive fence (solid line). The town can spend no more than \$4800 on fencing.
 - Use calculus to find the dimensions of a park with the largest possible area.
 - Use the first or second derivative test to check that your answer gives a maximum.

$$W =$$

20. (7 pts) Compute $\int \frac{5^{\sqrt{x}}}{\sqrt{x}} dx$

Answer:		

21. (7 pts) Sketch the graph of a function defined on $(-\infty, \infty)$ with exactly one discontinuity that satisfies:

•
$$f(2) = 3$$

•
$$\lim_{x \to -\infty} f(x) = 1$$
 and $\lim_{x \to \infty} f(x) = 0$

$$\bullet \ \lim_{x \to 0} f(x) = -\infty$$

•
$$f'(x) < 0$$
 for $x < 0$ and $x > 2$ and $f'(x) > 0$ for $0 < x < 2$

•
$$f''(x) < 0$$
 for $x < 0$ and $0 < x < 3$ and $f''(x) > 0$ for $x > 2$

