Math 232 Final Exam Review Questions

Sections covered: 6.1, 6.2, 6.4, 6.5, 7.1, 7.2 (powers of sine and cosine only), 7.3, 7.4, 7.5, 7.8, 10.1, 10.2, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 11.10, 11.11

Note: There will be some true false and multiple choice concept questions on the exam. I recommend working true false questions and concept checks in the chapter review sections for practice.

Note: The following problems are mostly from the review problems in the textbook.

- 1. Find the area of the region bounded by the curves:
 - (a) $y = 1 2x^2$, y = |x|(b) x + y = 0, $x = y^2 + 3y$
 - (c) $y = a \sqrt{x}, y = x^2$
- 2. Set up the integral to find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.

(a)
$$x = 0, x = 9 - y^2$$
, about $x = -1$

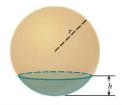
3. Each integral represents the volume of a solid. Describe the solid.

(a)
$$\int_0^{\pi/2} 2\pi \cos^2 x \, dx$$

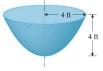
(b) $\int_0^{\pi} \pi (4 - \sin^2 x) \, dx$

(c)
$$\int_0^{\pi} \pi (2 - \sin x)^2 dx$$

- 4. The base of a solid is a square with vertices located at (1, 0), (0, 1), (-1, 0), (0, -1). Each cross-section perpendicular to the x-axis is a semicircle. Find the volume of the solid.
- 5. A monument in the shape of a square pyramid has height 20 meters. Its base is a square of side length 5 meters. Find the volume of the monument.
- 6. (p. 459 # 5a) Show that the volume of a segment of height *h* of a sphere of radius *r* is $V = \frac{1}{3}\pi h^2(3r h)$.



- 7. A force of 30 N is required to maintain a spring stretched from its natural length of 12 cm to a length of 15 cm. How much work is done in stretching the spring from 12 cm to 20 cm?
- 8. A 1600 lb elevator is suspended by a 200 ft cable that weighs 10 lb/ft. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft?
- 9. A tank full of water has the shape of a paraboloid of revolution as shown in the figure. That is, its



shape is obtained by rotating a parabola about a vertical axis.

(a) If its height is 4 ft and the radius at the top is 4 ft, find the work required to pump the water out of the tank.

- (b) After 4000 ft-lb of work has been done, what is the depth of the water remaining in the tank?
- 10. A steel tank has the shape of a circular cylinder oriented vertically with diameter 4 m and height 5 m. The tank is currently filled to a level of 3 m with cooking oil that has a density of 920 kg/m^3 . Compute the work required to pump the oil out through a 1-m spout at the top of the tank.
- 11. Find the average value of the function $f(t) = t \sin(t^2)$ on the interval [0, 10].
- 12. Integrate by hand:

(a)
$$\int \frac{dt}{2t^2+3t+1}$$

(b)
$$\int_0^{\pi/2} \sin^3 \theta \cos^2 \theta \, d\theta$$

(c)
$$\int_1^2 \frac{\sqrt{x^2-1}}{x} \, dx$$

(d)
$$\int_0^{\pi/6} t \sin 2t \, dt$$

(e)
$$\int_1^2 x^5 \ln x \, dx$$

(f)
$$\int \frac{e^{2x}}{1+e^{4x}} \, dx$$

(g)
$$\int \frac{x^2+2}{x+2} \, dx$$

(h)
$$\int e^x \cos x \, dx$$

13. Evaluate the integral or prove that it is divergent.

(a) $\int_{0}^{4} \frac{\ln x}{\sqrt{x}} dx$ (b) $\int_{0}^{\infty} \frac{\ln x}{x^{4}} dx$ (c) $\int_{0}^{1} \frac{1}{2-3x} dx$ (d) $\int_{1}^{\infty} \frac{2+\sin x}{\sqrt{x}} dx$

14. Determine if the integral converges or diverges and prove your answer.

(a)
$$\int_{1}^{\infty} \frac{1}{\sqrt{1+x^{4}}} dx$$

(b)
$$\int_{1}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} dx$$

(c)
$$\int_{0}^{1} \frac{\sec^{2} x}{x \sqrt{x}} dx$$

15. Find the length of the curve $y = \frac{x^4}{16} + \frac{1}{2x^2}$, $1 \le x \le 2$

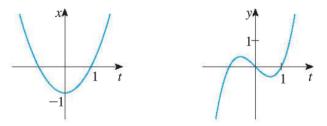
16. Find parametric equations for the following curves:

- (a) The curve $y = \sqrt{x}$
- (b) The curve $(x-3)^2 + (y-5)^2 = 36$
- (c) The line segment between the points (-2, 5) and (3, 7).

17. Sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.

- (a) $x = 2\cos\theta, y = 1 + \sin\theta$
- (b) $x = t^2 + 4t, y = 2 t, -4 \le t \le 1$

18. Use the graphs of x = f(t) and y = g(t) to sketch the parametric curve x = f(t), y = g(t). Indicate with arrows the direction in which the curve is traced as *t* increases.



- 19. Find the length of the curve $x = 3t^2$, $y = 2t^3$ between the origin and the point (12, 16) on the x-y plane.
- 20. Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.

(a)
$$a_n = \frac{2+n^3}{1+2n^3}$$

(b) $a_n = \cos(n\pi/2)$
(c) $a_n = \frac{n \sin n}{n^2+1}$
(d) $a_n = \frac{\ln n}{\sqrt{n}}$
(e) $\left\{ (1+3/n)^{4n} \right\}$
(f) $\left\{ \frac{(-10)^n}{n!} \right\}$
(g) $a_n = \frac{(-1)^n 3^n}{2^{2n}}$

- 21. A series $\sum_{n=1}^{\infty} a_n$ has partial sums $s_n = 2 (\frac{1}{3})^n$. Decide whether the series converges or diverges. Justify your answer. If it converges, find the sum.
- 22. Determine whether the series converges or diverges. Justify your answer. State the convergence test and check that any necessary conditions apply.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n+3^n}$
 - (b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$
 - (c) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+2}$
 - (d) $\sum_{n=1}^{\infty} \frac{n^2 2^{n-1}}{(-5)^n}$
 - (e) $\sum_{n=2}^{\infty} \frac{2n^2 3n + 6}{n^3 1}$
 - (f) $\sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{1}{3^n} \right)$
 - (g) $\sum_{k=1}^{\infty} \frac{1}{k\sqrt{k^2+1}}$
 - (h) $\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$
 - (i) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - (j) $\sum_{n=1}^{\infty} \frac{\sin 2n}{1+2^n}$

 - (k) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 5 \cdot 8 \cdots (3n-1)}$ (l) $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$
- 23. Determine whether the series is conditionally convergent, absolutely convergent, or divergent. Justify your answer.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{\ln n}$$

(b) $\sum_{n=2}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}$

24. Find the sum of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{3n}}$$

(b) $\sum_{n=4}^{\infty} \frac{3}{n^2 - 4}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^n}{3^{2n} (2n)!}$
(d) $1 - e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \cdots$
(e) $\frac{1}{1 \cdot 2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots$

- 25. Express $10.1\overline{35} = 10.13535353535353535$ as a ratio of integers.
- 26. Find the partial sum s_3 for the series and estimate the error in using it as an approximation for the sum of the series.
 - (a) $\sum_{n=1}^{\infty} 1/n^6$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n^2+n}$
- 27. For each of the above two sequences, how many terms are needed to approximate the sum to within 0.001?
- 28. Find the radius of convergence and the interval of convergence of the series.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n^{25n}}$$

(b) $\sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{(n+2)!}$
(c) $\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$

- 29. Find the Taylor series of $f(x) = \sin x$ at $a = \pi/6$
- 30. Find the Maclaurin series for f and its radius of convergence.

(a)
$$f(x) = \frac{x^2}{1+x}$$

(b) $f(x) = \ln(4-x)$
(c) $f(x) = xe^{2x}$

(d)
$$f(x) = 10^x$$

- (e) $f(x) = \sin(x^4)$
- (f) $f(x) = 6x^3 4x^2 + 2x + 7$
- 31. Use series to approximate $\int_0^1 x \arctan(x^4) dx$ correct to two decimal places.
- 32. Use series to evaluate the following limit: $\lim_{x\to 0} \frac{\sin x x}{x^3}$
- 33. Use a degree 3 Taylor polynomial, centered at a = 1, to approximate $f(x) = \ln(1 + 2x)$. Use Taylor's inequality to estimate the accuracy of the approximation when $0.5 \le x \le 1.5$.