Math 232 Final Exam Review Answers

Sections covered: $6.1,6.2,6.4,6.5,7.1,7.2$ (powers of sine and cosine only), $7.3,7.4,7.5,7.8,10.1,10.2,11.1$, $11.2,11.3,11.4,11.5,11.6,11.7,11.8,11.9,11.10,11.11$

Note: There will be some true false and multiple choice concept questions on the exam. I recommend working true false questions and concept checks in the chapter review sections for practice.

Note: The following problems are mostly from the review problems in the textbook.

1. Find the area of the region bounded by the curves:
(a) $y=1-2 x^{2}, y=|x|$

Answer: 7/12
(b) $x+y=0, x=y^{2}+3 y$

Answer: 32/3
(c) $y=a \sqrt{x}, y=x^{2}$

Answer: $\frac{a^{2}}{3}$
2. Set up the integral to find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.
(a) $x=0, x=9-y^{2}$, about $x=-1$

Answer: $\int_{-3}^{3} \pi\left(\left[\left(9-y^{2}\right)-(-1)\right]^{2}-[0-(-1)]^{2}\right) d y=\frac{1656}{5} \pi$
3. Each integral represents the volume of a solid. Describe the solid.
(a) $\int_{0}^{\pi / 2} 2 \pi \cos ^{2} x d x$

Answer: rotate $R=\{(x, y) \mid 0 \leq x \leq \pi / 2,0 \leq y \leq \sqrt{2} \cos (x)\}$ about the x-axis
(b) $\int_{0}^{\pi} \pi\left(4-\sin ^{2} x\right) d x$

Answer: rotate $R=\{(x, y) \mid 0 \leq x \leq \pi, \sin (x) \leq y \leq 2\}$ about the x -axis
(c) $\int_{0}^{\pi} \pi(2-\sin x)^{2} d x$

Answer: rotate $R=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq 2-\sin (x)\}$ about the x-axis, OR rotate $R=$ $\{(x, y) \mid 0 \leq x \leq \pi, \sin (x) \leq y 2\}$ around the line $y=2$
4. The base of a solid is a square with vertices located at $(1,0),(0,1),(-1,0),(0,-1)$. Each cross-section perpendicular to the x-axis is a semicircle. Find the volume of the solid.
Answer: $2 \int_{0}^{1} \frac{1}{2} \pi(1-x)^{2} d x=\pi / 3$
5. A monument in the shape of a square pyramid has height 20 meters. Its base is a square of side length 5 meters. Find the volume of the monument.
Answer: $\int_{0}^{20}\left(\frac{y}{4}\right)^{2} d x=\frac{500}{3} m^{3}$
6. (p. 459 \# 5a) Show that the volume of a segment of height h of a sphere of radius r is $V=\frac{1}{3} \pi h^{2}(3 r-h)$.

Answer: $V=\pi h^{2}(r-h / 3)$
7. A force of 30 N is required to maintain a spring stretched from its natural length of 12 cm to a length of 15 cm . How much work is done in stretching the spring from 12 cm to 20 cm ?
Answer: 3.2 J
8. A 1600 lb elevator is suspended by a $200 \mathrm{ft} \mathrm{cable} \mathrm{that} \mathrm{weighs} 10 \mathrm{lb} / \mathrm{ft}$. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft ?
Answer: work for elevator $=1600 * 30=48000$, work for bottom 170 feet of cable $=170 * 10 * 30=51000$, work for top 30 feet of cable $=\int_{0}^{3} 010 x d x=4500$, so total work $=103500 \mathrm{ft}-\mathrm{lbs}$
9. A tank full of water has the shape of a paraboloid of revolution as shown in the figure. That is, its

shape is obtained by rotating a parabola about a vertical axis.
(a) If its height is 4 ft and the radius at the top is 4 ft , find the work required to pump the water out of the tank.
(b) After $4000 \mathrm{ft}-\mathrm{lb}$ of work has been done, what is the depth of the water remaining in the tank?

Answer: (a) $8000 \pi / 3=8378 \mathrm{ft}-\mathrm{lb}$, (b) 2.1 ft
10. A steel tank has the shape of a circular cylinder oriented vertically with diameter 4 m and height 5 m . The tank is currently filled to a level of 3 m with cooking oil that has a density of $920 \mathrm{~kg} / \mathrm{m}^{3}$. Compute the work required to pump the oil out through a 1-m spout at the top of the tank.
Answer: $\int_{0}^{3} \pi \cdot 2^{2} \cdot 920 \cdot 9.8(6-y) d y=486,684 \pi \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2} / \mathrm{s}^{2}$
11. Find the average value of the function $f(t)=t \sin \left(t^{2}\right)$ on the interval $[0,10]$.

Answer: $\frac{1}{20}(1-\cos 100)$
12. Integrate by hand:
(a) $\int \frac{d t}{2 t^{2}+3 t+1}$

Answer: $\ln |2 t+1|-\ln |t+1|+C$ (partial fractions)
(b) $\int_{0}^{\pi / 2} \sin ^{3} \theta \cos ^{2} \theta d \theta$

Answer: 2/15 (use trig identities)
(c) $\int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x} d x$

Answer: $\sqrt{3}-\pi / 3$ (trig substitution)
(d) $\int_{0}^{\pi / 6} t \sin 2 t d t$

Answer: $-\pi / 24+\sqrt{3} / 8$ (integration by parts)
(e) $\int_{1}^{2} x^{5} \ln x d x$

Answer: $\frac{32}{3} \ln 2-\frac{7}{4}$ (integration by parts)
(f) $\int \frac{e^{2 x}}{1+e^{4 x}} d x$

Answer: $\frac{1}{2} \tan ^{-1}\left(e^{2 x}\right)+C$ (u-substitution)
(g) $\int \frac{x^{2}+2}{x+2} d x$

Answer: $\frac{1}{2} x^{2}-2 x+6 \ln |x+2|+C$ (partial fractions)
(h) $\int e^{x} \cos x d x$

Answer: $\frac{1}{2} e^{x}(\cos (x)+\sin (x))+C$
13. Evaluate the integral or prove that it is divergent.
(a) $\int_{0}^{4} \frac{\ln x}{\sqrt{x}} d x$

Answer: $4 \ln 4-8$
(b) $\int_{0}^{\infty} \frac{\ln x}{x^{4}} d x$

Answer: diverges because $\int_{0}^{1} \frac{\ln x}{x^{4}} d x$ diverges
(c) $\int_{0}^{1} \frac{1}{2-3 x} d x$

Answer: diverges because $\int_{0}^{2 / 3}=\lim _{t \rightarrow \frac{2}{3}}\left[-\frac{1}{3} \ln |2-3 x|\right]_{0}^{t}=\infty$
(d) $\int_{1}^{\infty} \frac{2+\sin x}{\sqrt{x}} d x$

Answer: diverges by comparing to $\frac{1}{\sqrt{x}}$
14. Determine if the integral converges or diverges and prove your answer.
(a) $\int_{1}^{\infty} \frac{1}{\sqrt{1+x^{4}}} d x$

Answer: converges by comparing to $\int_{0}^{\infty} \frac{1}{x^{2}} d x$
(b) $\int_{1}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} d x$

Answer: diverges by comparing to $\int_{1}^{\infty} \frac{1}{x} d x$
(c) $\int_{0}^{1} \frac{\sec ^{2} x}{x \sqrt{x}} d x$

Answer: diverges by comparing to $\int_{0}^{1} \frac{1}{x^{3 / 2}} d x$
15. Find the length of the curve $y=\frac{x^{4}}{16}+\frac{1}{2 x^{2}}, 1 \leq x \leq 2$

Answer: 21/16
16. Find parametric equations for the following curves:
(a) The curve $y=\sqrt{x}$ Answer: $x=t, y=\sqrt{t}$ for $t \geq 0$, or $y=t, x=t^{2}$ for $t \geq 0$.
(b) The curve $(x-3)^{2}+(y-5)^{2}=36$ Answer: $x=6 \cos (t)+5, y=6 \sin (t)+3,0 \leq t<2 \pi$
(c) The line segment between the points $(-2,5)$ and $(3,7)$. Answer: $x=-2+5 t, y=5+2 t, 0 \leq t \leq 1$
17. Sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.
(a) $x=2 \cos \theta, y=1+\sin \theta$

Answer: $\frac{x^{2}}{4}+(y-1)^{2}=1$
(b) $x=t^{2}+4 t, y=2-t,-4 \leq t \leq 1$

Answer: $x=12-8 y+y^{2}, 1 \leq y \leq 6$
18. Use the graphs of $x=f(t)$ and $y=g(t)$ to sketch the parametric curve $x=f(t), y=g(t)$. Indicate with arrows the direction in which the curve is traced as t increases.

Answer:

19. Find the length of the curve $x=3 t^{2}, y=2 t^{3}$ between the origin and the point $(12,16)$ on the $x-y$ plane. Answer: $2(5 \sqrt{5}-1)$
20. Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.
(a) $a_{n}=\frac{2+n^{3}}{1+2 n^{3}}$

Answer: 1/2
(b) $a_{n}=\cos (n \pi / 2)$

Answer: diverges
(c) $a_{n}=\frac{n \sin n}{n^{2}+1}$

Answer: 0
(d) $a_{n}=\frac{\ln n}{\sqrt{n}}$

Answer: 0
(e) $\left\{(1+3 / n)^{4 n}\right\}$

Answer: e^{12}
(f) $\left\{\frac{(-10)^{n}}{n!}\right\}$

Answer: 0
(g) $a_{n}=\frac{(-1)^{n} 3^{n}}{2^{2 n}}$

Answer: 0
Answer: All a_{n} are bounded above by 2 . To see this, note that $a_{1}<2$. For any n, if it is true that $a_{n}<2$, then $a_{n+1}=\frac{1}{3}\left(a_{n}+4\right)<\frac{1}{3}(2+4)=2$, so $a_{n+1}<2$. So by induction, for all $n, a_{n}<2$. Also, the a_{n} 's are increasing. To see this, note that since $a_{n}<2$, we have $a_{n+1}-a_{n}=\frac{1}{3}\left(a_{n}+4\right)-a_{n}=-\frac{2}{3} a_{n}+\frac{4}{3}>-\frac{4}{3} a_{n}+\frac{4}{3}=0$, so the a_{n} 's are increasing. An increasing sequence that is bounded above has to converge.
21. A series $\sum_{n=1}^{\infty} a_{n}$ has partial sums $s_{n}=2-\left(\frac{1}{3}\right)^{n}$. Decide whether the series converges or diverges. Justify your answer. If it converges, find the sum.
Answer: Since the partial sums converge to $2-0=2$, the series converges to 2 by definition.
22. Determine whether the series converges or diverges. Justify your answer. State the convergence test and check that any necessary conditions apply.
(a) $\sum_{n=1}^{\infty} \frac{1}{n+3^{n}}$

Answer: converges by limit comparison with $\frac{1}{3^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$

Answer: diverges because the terms don't go to zero
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+2}$

Answer: converges by the alternating series test
(d) $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n-1}}{(-5)^{n}}$

Answer: converges by the ratio test
(e) $\sum_{n=2}^{\infty} \frac{2 n^{2}-3 n+6}{n^{3}-1}$

Answer: diverges by the limit comparison test
(f) $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}+\frac{1}{3^{n}}\right)$

Answer: converges using the p-test and the geometric series test
(g) $\sum_{k=1}^{\infty} \frac{1}{k \sqrt{k^{2}+1}}$

Answer: converges by comparison test with $\frac{1}{k^{2}}$
(h) $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$

Answer: converges by the ratio test
(i) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

Answer: converges by the ratio test
(j) $\sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}}$

Answer: The absolute valued series converges by comparison to $\frac{1}{2^{n}}$. Absolutely convergent implies convergent.
(k) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}$

Answer: converges by the Ratio Test, or by comparison to $\left(\frac{2}{3}\right)^{n}$
(l) $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$

Answer: diverges by the integral test
23. Determine whether the series is conditionally convergent, absolutely convergent, or divergent. Justify your answer.
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n} \sqrt{n}}{\ln n}$

Answer: diverges because terms don't go to zero
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln n}{\sqrt{n}}$

Answer: converges conditionally
24. Find the sum of the series.
(a) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{3 n}}$

Answer: 1/11
(b) $\sum_{n=4}^{\infty} \frac{3}{n^{2}-4}$

Answer: 77/80
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{3^{n n}(2 n)!}$

Answer: $\cos \left(\frac{\sqrt{\pi}}{3}\right)$
(d) $1-e+\frac{e^{2}}{2!}-\frac{e^{3}}{3!}+\frac{e^{4}}{4!}-\cdots$

Answer: e^{-e}
(e) $\frac{1}{1 \cdot 2}-\frac{1}{3 \cdot 2^{3}}+\frac{1}{5 \cdot 2^{5}}-\frac{1}{7 \cdot 2^{7}}+\cdots$

Answer: $\arctan \left(\frac{1}{2}\right)$
25. Express $10.1 \overline{35}=10.135353535353535$ as a ratio of integers.

Answer: 10034/990
26. Find the partial sum s_{3} for the series and estimate the error in using it as an approximation for the sum of the series.
(a) $\sum_{n=1}^{\infty} 1 / n^{6}$

Answer: $s_{3} \approx 1.016997, R_{3}<1 /\left(5 * 3^{5}\right) \approx 0.000823$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n^{2}+n}$

Answer: $s_{3} \approx 0.22083, R_{3}<1 / 52=0.01923$
27. For each of the above two sequences, how many terms are needed to approximate the sum to within 0.001?

Answer: 3 and 18
28. Find the radius of convergence and the interval of convergence of the series.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n^{2} 5^{n}}$

Answer: $R=5, I=[-5,5]$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}(x-2)^{n}}{(n+2)!}$

Answer: $R=\infty, I=(-\infty, \infty)$
(c) $\sum_{n=0}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}$

Answer: $R=1 / 2, I=[5 / 2,7 / 2)$
29. Find the Taylor series of $f(x)=\sin x$ at $a=\pi / 6$

Answer: $\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!}\left(x-\frac{\pi}{6}\right)^{2 n}+\frac{\sqrt{3}}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!}\left(x-\frac{\pi}{6}\right)^{2 n+1}$
30. Find the Maclaurin series for f and its radius of convergence.
(a) $f(x)=\frac{x^{2}}{1+x}$

Answer: $\sum_{n=0}^{\infty}(-1)^{n} x^{n+2}$ with $R=1$
(b) $f(x)=\ln (4-x)$

Answer: $\ln 4-\sum_{n=1}^{\infty} \frac{x^{n}}{n 4^{n}}, R=4$
(c) $f(x)=x e^{2 x}$

Answer: $\sum_{n=0}^{\infty} \frac{2^{n} x^{n+1}}{n!}, R=\infty$
(d) $f(x)=10^{x}$

Answer: $\sum_{n=0}^{\infty} \frac{(\ln 10)^{n} x^{n}}{n!}, R=\infty$
(e) $f(x)=\sin \left(x^{4}\right)$

Answer: $\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdot 9 \cdot \cdots(4 n-3)}{2 \cdot 4^{n} \cdot n!16^{n}} x^{n}, R=16$
(f) $f(x)=6 x^{3}-4 x^{2}+2 x+7$

Answer: $6 x^{3}-4 x^{2}+2 x+7$
31. Use series to approximate $\int_{0}^{1} x \arctan \left(x^{4}\right) d x$ correct to two decimal places.

Answer: $1 / 6-1 / 42+1 / 120-\cdots \approx 0.15$
32. Use series to evaluate the following limit: $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$

Answer: $-\frac{1}{6}$
33. Use a degree 3 Taylor polynomial, centered at $a=1$, to approximate $f(x)=\ln (1+2 x)$.

Use Taylor's inequality to estimate the accuracy of the approximation when $0.5 \leq x \leq 1.5$.
Answer: $\left|R_{3}\right|<\frac{1}{64}$ using Taylor's Inequality, or $\left|R_{3}\right|<\frac{1}{324}$ using the Alternating Series Estimate for Remainders.

