- This event has passed.

# Peter Lambert-Cole (Indiana), Triangle Topology Seminar

## February 21, 2017 @ 3:00 pm - 4:00 pm

There will be two talks; one at 3:00 pm and the second talk will be at 4:15 pm.

**Title:** Conway mutation and knot Floer homology

**Abstract:** Mutant knots are notoriously hard to distinguish. Many, but not all, knot invariants take the same value on mutant pairs. Khovanov homology with coefficients in Z/2Z is known to be mutation-invariant, while the bigraded knot Floer homology groups can distinguish mutants such as the famous Kinoshita-Terasaka and Conway pair. However, Baldwin and Levine conjectured that delta-graded knot Floer homology, a singly-graded reduction of the full invariant, is preserved by mutation. In this talk, I will give a new proof that Khovanov homology mod 2 is mutation-invariant. The same strategy can be applied to delta-graded knot Floer homology and proves the Baldwin-Levine conjecture for mutations on a large class of tangles.