
- This event has passed.
Olivier Debarre, Geometric Methods in Representation Theory
March 10, 2017 @ 4:00 pm - 5:00 pm
Title: Unexpected Isomorphisms between Hyperkahler Fourfolds
Abstract: In 1985, Beauville and Donagi showed by an explicit geometric construction that the variety of lines contained in a Pfaffian cubic hypersurface in $P^5$ is isomorphic to a canonical desingularization of the symmetric self-product of a K3 surface (called its Hilbert square). Both of these projective fourfolds are hyperkähler (or symplectic): they carry a symplectic 2-form.
In 1998, Hassett showed by a deformation argument that this phenomenon occurs for countably many families of cubic hypersurfaces in $P^5$.
Using the Verbitsky-Markman Torelli theorem and results of Bayer-Macri, we show these unexpected isomorphisms (or automorphisms) occur for many other families of hyperkähler fourfolds. This involves playing around with Pell-type diophantine equations. This is joint work with Emanuele Macrí.